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V. Introduction

An investigation of three-dimensional ultrasonic mammography is underway. The goal
of the research is improved diagnosis of breast cancer by quantitative, high-resolution three-
dimensional ultrasonic imaging. This goal is being reached by a thorough program that
synthesizes recent advances in tissue modeling, adaptive imaging, instrumentation, and sig-
nal processing. The final result of the research will be a major advance in quantitative
three-dimensional ultrasonic mammography. Improved resolution, accurate quantitative in-
formation on tissue properties, and precise determination of three-dimensional breast struc-
ture will provide crucial new information for detection, diagnosis, and monitoring of breast
cancer. The goal of three-dimensional quantitative imaging is currently being achieved using
novel inverse scattering methods invented by the Principal Investigator and coworkers. Use of
full time-domain scattering information provides images with high point resolution, contrast
resolution, and quantitative accuracy without significant artifacts. Nonlinear forms of these
methods provide a robust approach to adaptive imaging that is based on compensation for
three-dimensional scattering from actual tissue structure. Unlike previous adaptive imaging
methods based on assumptions of phase-screen aberrators and point scatterers, these meth-
ods provide aberration correction ideally suited to distributed inhomogeneous tissue like the
breast. A unique and innovative aspect of the research is the use of realistic tissue models
for ultrasonic propagation through breast tissue. Such models have been shown to realisti-
cally model wavefront distortion in the human abdominal wall, but have not to date been
applied to the human breast. Tissue modeling techniques employ tissue maps obtained from
specimen cross sections as well as from newly available high-resolution volume photographic
data. Calculated scattering from these tissue models provides accurate characterization of
ultrasonic propagation within breast tissue and realistic data for quantitative imaging al-
gorithms. The above studies will facilitate the application of breakthroughs from tissue
modeling, inverse scattering, and signal processing to the critical application of ultrasonic
mammography. Completion of the proposed research will make possible new mammographic
applications of ultrasound that will provide clinicians with previously unavailable informa-
tion and detail. The end result will be a lower-cost, more effective, and safer modality for
diagnosis, detection, and monitoring of breast cancer.




VI. Body of Report

Below, the accomplishments of the second year for this project are summarized under
the four categories of the approved Statement of Work. Details are given for how accom-
plishments to date fit into the overall research plan. Where applicable, brief descriptions of
planned research indicate how the remainder of the Statement of Work will be fulfilled.

A. Quantitative Imaging Algorithm Development

A new method for ultrasonic imaging, specifically tailored to ultrasonic mammography,
has also been developed. This method allows quantitative, high-resolution images to be
obtained using direct synthetic-aperture processing of time-domain scattered fields. An
archival manuscript regarding the method was completed, revised, and published during the
second year of this project and is included as Appendix A of this report [1]. Additional
results, including the reconstructions from experimentally measured ultrasonic scattering
data, were presented at the 1999 IEEE Ultrasonics Symposium in November 1999; a pub-
lished manuscript from the Symposium Proceedings [2] is included as Appendix B. The
experimental reconstructions show considerable promise for breast cancer detection. Partic-
ularly encouraging is the fact that sub-resolvable structures appear as smoothed variations
rather than as speckle.

Work has continued on the new time-domain imaging method with implementation non-
linear aberration correction. Such correction provides improved synthetic focusing capability
based on medium models determined from quantitative image data. In one approach, im-
proved images are reconstructed using numerical propagation of wavefields into estimates
of the unknown medium [3, 4]. In another, much more efficient approach, the quantitative
sound-speed reconstruction obtained by the time-domain imaging method is employed to
determine time shifts that, when applied to the measured scattering data, compensate for
focus aberration caused by inhomogeneous breast tissue. An efficient implementation, in
which the necessary line integrals are performed using a DDA (digital differential analyzer)
method, allows each iteration to be performed as rapidly as the initial linear reconstruction.
Results obtained using this method were presented at the DoD Era of Hope meeting [5]
(abstracts provided in the Appendices) and are described below in this report.

The capabilities of the new time-domain imaging method are exciting for several reasons.
First, the images are both higher in quality and more efficiently computed than conventional
single-frequency quantitative images. The high point and contrast resolution, as well as ab-
sence of artifacts usually associated with diffraction tomography, suggests that this method
will be very useful for detection and characterization of breast lesions. Second, because of the
close analogy between the new method and delay-and-sum imaging, the new method could
be implemented in hardware using beamforming technology already present on digital ultra-
sound scanners. Third, the quantitative reconstructions provided by the new method allow
aberration correction to be implemented much more robustly than possible in conventional
pulse-echo imaging. The new time-domain method also has the capability to incorporate
other imaging techniques (e.g., time-gain compensation and harmonic imaging) currently
used in clinical and experimental B-scan systems.




B. Tissue Modeling

Progress toward improved scattering models for ultrasound-breast tissue interaction has
been made in several studies.

Work on improved scattering models for ultrasound-tissue interaction continued. A paper
on simulation of ultrasonic propagation through cross-sectional models of chest wall tissue
was revised and published in JASA [6] and is included here as Appendix C. This work expands
upon previous models by including tissue-dependent absorption effects and by analysis of
the frequency dependence of ultrasonic wavefront distortion.

Work on k-space methods for measurements of ultrasonic scattering also continued, and
significant new progress was made. A collaborative project with Weidlinger Associates and
the University of Rochester provided detailed quantitative comparisons between a new k-
space method and a state-of-the-art pseudospectral solver. This study showed that the
k-space method has strong advantages for large-scale simulations of propagation through
soft tissue, which is precisely the simulation problem of interest for the USAMRMC-funded
breast cancer study. The comparison was presented at the 1999 IEEE Ultrasonics Symposium
and has been published in the proceedings of that symposium; a copy of that publication is
included here as Appendix D [7].

Knowledge gained from the abovementioned comparison project led to a number of im-
provements in the k-space method, including improved computational efficiency, more ac-
curate interpolation of simulated pressure signals, and more effective methods to compute
scattering from media including discontinuities. These improvements were reported in a pre-
sentation to the Acoustical Society of America [4], (abstract provided in the Appendices).
These comparisons, as well as new analysis that explains the remarkable stability and accu-
racy of the k-space method, greatly improved the extensively revised version of a manuscript
accepted for publication [8] that is provided here as Appendix E.

Now that a robust, efficient three-dimensional method for computation of ultrasonic
propagation is available, work on mapping of breast tissue has begun in earnest. In collabo-
ration with colleagues at the University of Rochester, cross-sectional breast tissue specimens
have been sectioned and stained for high-resolution segmentation by tissue type. One such
tissue cross section is shown, together with a computed ultrasonic pulse propagating within
the tissue, in Fig. 1. The ultrasonic propagation was computed using the k-space method,
which provides much greater efficiency and accuracy than the finite-difference method used
in previous simulation studies of propagation through tissue 6, 9, 10].

During the second year of the project, photographic image data from the Visible Woman
data set [11] was also analyzed to obtain quantitative maps of breast tissue for simulation
studies and testing of imaging algorithms. A method in which hue, saturation, and value are
mapped to tissue type was applied; this method also incorporates nonlinear processing to
enforce uniformity among multiple layers in three-dimensional breast models. An example
two-dimensional simulation, using the k-space method and a Visible Woman breast model,
is shown in Fig. 2.

During the third year of the project, the new automatic segmentation method will be
applied to three-dimensional photographic data from the Visible Woman data set to ob-
tain definitive three-dimensional models of breast tissue structure for studies of ultrasonic
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Figure 1: Ultrasonic propagation of a 2.5 MHz pulse through a two-dimensional breast cross-
sectional model obtained from a segmented, stained breast tissue cross section. An area of
167 x 50 mm? is shown.

\.
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Figure 2: Three frames showing ultrasonic propagation of a 1 MHz pulse through a two-
dimensional breast cross-sectional model obtained from the Visible Woman data set. Each
panel shows an area of 97 x 69 mm?.

propagation and imaging.

C. Quantitative Imaging Algorithm Implementation

Quantitative reconstructions performed using the time-domain diffraction tomography
method are shown in Refs. [1] (Appendix A) and [2] (Appendix B) for simulated two-
dimensional and three-dimensional scattering data. These results are promising for ultrasonic
mammography. As discussed below in section D (Evaluation and Comparison of Results),
time-domain quantitative images show parametric accuracy, high resolution, and few arti-
facts. Effects of limited scattering data, shown in Fig. 3 of Appendix A for the 2D case,
indicate that accurate images can be obtained without the necessity of apertures that entirely
enclose the breast.

Reconstructions employing experimentally measured scattering data have also been per-
formed in collaboration with colleagues at the University of Rochester. Tissue-mimicking
phantoms composed of agar gel with glass spheres have been constructed and their scat-
tering has been measured using a 2048-element ring transducer. Reconstructions using the
new time-domain diffraction tomography method are shown in Ref. [2] (Appendix B). These
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Figure 3: Aberration correction applied to time-domain quantitative imaging of a breast
tissue model. From left to right: unaberrated image; first iteration; second iteration. Each
panel shows the reconstructed sound speed as a linear grayscale image, with black indicating
the maximum sound speed (e.g., connective tissue) and white indicating minimum speed
(e.g., fat).

reconstructions show great promise for practical implementation of the new time-domain
diffraction tomography method for breast imaging in vivo.

An anthropomorphic breast-mimicking phantom, developed in collaboration between
General Electric, University of Wisconsin, and University of Rochester, is also available
for testing. Time-domain scattering data, to be taken with the 2048-element University
of Rochester ring transducer [12] will be used as input for testing of the new time-domain
quantitative imaging method. Both 2D and 3D reconstructions will be performed.

As described above, a nonlinear, aberration-corrected version of the new time-domain
inverse scattering method has been implemented and tested with simulated data (from the
breast tissue models described above in section B, Tissue Modeling). Preliminary results,
as seen in Figure 3, indicate that the aberration correction scheme will allow accurate ul-
trasonic images of whole breasts to be obtained. During the third year of the project,
aberration-corrected time-domain diffraction tomography will also be applied to imaging of
large phantoms, such as the GE breast phantom, from experimentally measured scattering
data.

D. Evaluation and Comparison of Results

Analysis of the time-domain imaging results for simulated data is given in Ref. [1] (Ap-
pendix A). These results indicate that high quantitative accuracy can be achieved. Compu-
tations of point-spread functions (Fig. 2 in Appendix A) show that the time-domain method
yields higher point and contrast resolution than single-frequency diffraction tomography. For
the 3D case, the level of the first sidelobe is reduced by 13 dB, while the second sidelobe is
reduced by 18 dB. Because of the broadband scattering information employed, the width of
the main lobe indicates point resolution of features smaller than one-half wavelength at the

center frequency.
Evaluation of quantitative accuracy (Fig. 4 in Appendix A) shows that the time-domain

diffraction tomography method provides parametric accuracy similar to established single-
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frequency methods while showing much more immunity from artifacts. The new aberration
correction method, described above and illustrated in Fig. 1, provides high quantitative
accuracy even for imaging of large inhomogeneities for which the Born approximation does
not hold.

Two-dimensional and three-dimensional reconstructions performed using the new time-
domain quantitative imaging method will be directly compared to analogous images from
other modalities such as x-ray computed tomography and conventional B-scan ultrasound.
Consultants Dr. Jonathan Meilstrup and Dr. Claudia Kasales will help with this portion of
evaluation and comparison of results. This evaluation task will take place during the third
year of the project.

Quantitative evaluation of the k-space method for simulation of ultrasonic propagation
has been performed and is reported in Refs. [7] (Appendix D) and [8] (Appendix E). These
results show that the k-space method provides much higher accuracy than finite-difference
or pseudospectral methods. A particularly striking result is that simulated ultrasonic waves
can propagate many thousands of wavelengths without distortion [4].

Regarding the task of publishing results in archival journals, the second year of the project
has resulted in two published articles, one accepted article, and two articles in a peer-reviewed
conference proceedings volume. Further publications planned to be prepared during the next
year will be based on abberation-corrected time-domain diffraction tomography, modeling of
breast tissue based on the Visible Woman data set, and scattering computations employing
realistic breast tissue models.

10




VII. Key Research Accomplishments

The key research accomplishments to date in this project can be summarized as follows:

Development of a new time-domain quantitative imaging method designed specifically
for ultrasonic mammography.

Numerical implementation and testing of the new time-domain imaging method, show-
ing that this method provides high accuracy with greater efficiency than previous in-
verse scattering methods.

Testing of the time-domain imaging method using scattering data measured by a 2048-
element ring transducer.

Implementation of abberation correction to the time-domain quantitative imaging
method.

Implementation of a tissue-dependent absorption model for simulations of scattering
and propagation.

Characterization of the frequency dependence of ultrasonic scattering from human soft
tissues.

Exact computation of time-domain scattering from simple objects for testing of quan-
titative imaging methods.

Implementation and testing of a new k-space method for computation of scattering,
indicating that the method is accurate and extremely efficient, and therefore ideal for
the proposed 3D computations of scattering from breast tissue.

Extension of the new k-space method to include tissue-dependent absorption, absorbing
boundary layers, and three-dimensional scattering.

Development of realistic breast tissue models using stained tissue cross sections and
photographic data from the Visible Woman data set.

Use of the k-space method to compute time-domain scattering data from realistic breast
tissue models, for analysis of wavefront distortion and testing of quantitative imaging
algorithms.

Quantitative analysis of inverse scattering results, indicating that time-domain recon-
structions provide much higher point resolution, contrast resolution, and freedom from
artifacts than single-frequency reconstructions.

11
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VIII. Reportable Outcomes

Reportable outcomes for the second year of this project research have included two pa-
pers published in archival journals [1, 6], one additional accepted paper (8], two papers
published in the 2000 IEEE Ultrasonics Symposium Proceedings [2, 7], and two published
abstracts presented at scientific meetings [5, 4]. All of these publications, as well as a current
Curriculum Vitae for the Principal Investigator, are included below in the Appendices.

Accomplishments performed under the USAMRMC-funded project have facilitated ap-
plications for other funding support. The proposal “High-Resolution Breast Tissue Mapping
using Pulse-Echo Ultrasonography” (T. Douglas Mast, Principal Investigator) was submit-
ted to the Concept Award program of the USAMRMC. This study was not funded. An
additional proposal, “Optimized Intracavitary Ultrasound Array for Uniform Hyperther-
mia Treatment of Prostate Cancer” (Nadine B. Smith, Principal Investigator; T. Douglas
Mast, Co-Principal Investigator; funding notification pending) was submitted to the DoD
Prostate Cancer Research Program. Although not a direct extension of the present ultrasonic
mammography project, the proposed project would leverage the advanced tissue modeling
techniques developed for the current USAMRMC-funded research.

The Principal Investigator of this project has been appointed to the position of Assistant
Professor in the Pennsylvania State University Graduate Program in Acoustics. During the
Spring of 2000, he taught a well-received upper-level graduate course on acoustic scattering.
This course included a comprehensive treatment of ultrasonic scattering by human tissues,
and was greatly enriched by the Principal Investigator’s research performed for the present
USAMRMC-funded project.

A student, James F. Kelly, has recently been added to the project team. Mr. Kelly is
not directly funded by the USAMRMC, but instead is supported by the Mathematics Honor
Student program of the Applied Research Laboratory. He is currently exploring aspects of the
time-domain inverse scattering problem, including deconvolution of scattered wavefields, that
extend the present Statement of Work (some of this includes research into ideas discussed
in the abovementioned Concept Award proposal). If successful, these exploratory studies
will allow the imaging methods developed under the USAMRMC-funded research to achieve
practical application even more rapidly. '

12




IX. Conclusions

The second year of this USAMRMC-funded project has yielded considerable progress to-
ward the goal of improved diagnosis of breast cancer by three-dimensional ultrasonic imaging.
Several breakthroughs have been made which will provide a solid foundation for the con-
tinued tissue modeling and quantitative imaging research planned for the last year of the
project.

Breakthroughs in the area of quantitative imaging have included successful imaging of
tissue-mimicking phantoms using measured scattering data as well as implementation of a
new aberration correction method for quantitative ultrasonic mammography. The present
method is potentially of very great importance for breast cancer diagnosis for several rea-
sons: (1) images have higher quality than that achievable by conventional inverse scattering
methods or by current ultrasound scanners, (2) tissue parameters are computed and quanti-
tatively imaged with high accuracy, and (3) the close analogy between the new method and
conventional synthetic-aperture imaging will allow rapid implementation of the new method
on hardware similar to currently used beamformers. The additional improvement of aberra-
tion correction increases the value of this method even more, because the strong scattering
inherent to breast tissue [13] is an important limiting factor to existing ultrasonic imaging
methods.

In the area of breast tissue modeling, simulation methods have been developed that will
allow efficient computation of scattering from fully three-dimensional models of breast tissue.
A new k-space method has been implemented, rigorously tested, and extended to include ab-
sorbing boundary conditions as well as tissue-dependent ultrasonic absorption. The method
has been shown to provide the accuracy and efficiency needed for large-scale computations
of ultrasonic propagation within the human breast. A three-dimensional implementation of
this method is already in place. Breast tissue models have been developed using both stained
cross sections of human breast tissue and photographic image data from the Visible Woman
project of the National Library of Medicine.

Future work based on these breakthroughs will follow the approved Statement of Work.
Plans for the final year of research include detailed simulation of ultrasound interaction with
breast tissue for two- and three-dimensional tissue models. Definitive aberration-corrected
reconstructions will be computed both for measured scattering data from breast-mimicking
phantoms and for simulated scattering data using detailed breast models. These results
will be carefully evaluated for accuracy and clinical utility, in collaboration with the named
clinical consultants.

The final outcome of the successfully completed project will be a novel method for early
detection, characterization, and treatment monitoring of breast cancer lesions. Results to
date indicate that the final method will provide image quality and diagnostic information
greatly superior to current 2D and 3D ultrasonic mammography methods The finally re-
sulting method is expected to be competitive with magnetic resonance imaging and x-ray
computed tomography as a tool for breast cancer diagnosis, while maintaining inherent ad-
vantages of ultrasound such as lower cost, ability to characterize cystic and solid lesions, and
safe nonionizing radiation.
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. Wideband quantitative ultrasonic imaging by time-domain
diffraction tomography

T. Douglas Mast
Applied Research Laboratory, The Pennsylvania State University, University Park, Pennsylvania 16802

(Received 3 April 1999; revised 27 August 1999; accepted 30 August 1999)

A quantitative ultrasonic imaging method employing time-domain scattering data is presented. This
method provides tomographic images of medium properties such as the sound speed contrast; these
images are equivalent to multiple-frequency filtered-backpropagation reconstructions using all
frequencies within the bandwidth of the incident pulse employed. However, image synthesis is
performed directly in the time domain using coherent combination of far-field scattered pressure
waveforms, delayed and summed to numerically focus on the unknown medium. The time-domain
method is more efficient than multiple-frequency diffraction tomography methods, and can, in some
cases, be more efficient than single-frequency diffraction tomography. Example reconstructions,
obtained using synthetic data for two- and three-dimensional scattering of wideband pulses, show
that the time-domain reconstruction method provides image quality superior to single-frequency
reconstructions for objects of size and contrast relevant to medical imaging problems such as
ultrasonic mammography. The present method is closely related to existing synthetic-aperture
imaging methods such as those employed in clinical ultrasound scanners. Thus, the new method can
be extended to incorporate available image-enhancement techniques such as time-gain
compensation to correct for medium absorption and aberration correction methods to reduce error

associated with weak scattering approximations. © 1999 Acoustical Society of America.

[S0001-4966(99)04612-3]

PACS numbers: 43.20.Fn, 43.60.Rw, 43.80.Vj, 43.20.Px [ANN]

INTRODUCTION

Quantitative imaging of tissue properties is a potentially
useful technique for diagnosis of cancer and other pathologi-
cal conditions. Inverse scattering methods such as diffraction
tomography can provide quantitative reconstruction of tissue
properties including sound speed, density, and absorption.
However, although previous inverse scattering methods have
achieved high resolution and quantitative accuracy, such
methods have not yet been incorporated into commercially
successful medical ultrasound imaging systems.

Current inverse scattering methods are lacking in several
respects with respect to conventional B-scan and synthetic
aperture imaging techniques. Previous methods of diffraction
tomography, including methods based on the Born and Ry-
tov approximations,"2 and higher-order nonlinear
approaches,g”4 have usually been based on single-frequency
scattering, while current diagnostic ultrasound scanners em-
ploy wideband time-domain signals. The use of wideband
information in image reconstruction is known to provide in-
creased point and contrast resolution,>® both of which are
important for medical diagnosis.5’7'8

Several approaches have been used to incorporate wide-
band scattering information into quantitative ultrasonic im-
aging. One group of methods employs time-domain tomog-
raphy based on Radon-transform relationships that hold
(under the assumption of weak scattering) between scattered
acoustic fields and the reflectivity or scattering strength of
the medium. Pioneering work in this area’!® employed mea-
surements of reflectivity in pulse-echo mode, while later
studies have incorporated aberration correction' "2 and
multiple-angle scattering measurements.”>!* A limitation of
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these methods, however, is that the Radon transform rela-
tionship strictly holds only when the medium is insonified by
an impulsive (infinite bandwidth) wave. When pulses of fi-
nite bandwidth are employed, image quality can degrade
significantly.'®

A number of linear and nonlinear diffraction tomogra-
phy methods have been implemented using scattering data
for a number of discrete frequencies (e.g., Refs. 16-19). Al-
though use of multiple-frequency data provides improve-
ments in image quality, computational requirements for
multiple-frequency imaging are typically large because the
computational cost is proportional to the number of frequen-
cies employed. To achieve image quality competitive with
present diagnostic scanners, together with quantitative imag-
ing of tissue properties, present frequency-domain methods
may require solution of the inverse scattering problem for
many frequencies within the bandwidth of the transducer
employed. This approach thus demands a high computational
cost, so that high-quality real-time imaging may not be pres-
ently feasible using current frequency-domain inverse scat-
tering methods.

Very few previous workers have investigated direct use
of time-domain waveform data for inverse scattering meth-
ods analogous to frequency-domain diffraction tomography.
Several methods?®?! have used frequency decomposition of
scattered pulses to construct a wideband estimate of the spa-
tial Fourier transform of an unknown medium; after appro-
priate averaging and interpolation, this transform can be in-
verted to obtain a wideband Born reconstruction of the
medium. A study reported in Ref. 22 has showed that broad-
band synthetic aperture imaging using linear arrays is closely
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related to inverse scattering using filtered backpropagation.
A related method, suggested in Ref. 23, provides a time-
domain reconstruction algorithm that employs filtered back-
propagation of scattered waveforms measured on a circular
boundary. However, the time domain reconstruction formula
of Ref. 23 yields reconstructions that are less general than
multiple-frequency reconstructions obtained using the same
signal bandwidth.

Another approach, related both to multiple-frequency
methods and direct time-domain methods, has recently been
presented.24 This work extends the eigenfunction method of
Ref. 19 to use the full bandwidth of the incident pulse wave-
form. In the extended method, eigenfunctions and eigenval-
ues of a scattering operator are computed to obtain a
frequency-dependent representation of the scattering me-
dium. Fourier synthesis is then applied to obtain a time-
dependent estimate of the medium. A cross-correlation op-
eration removes the time dependence of the estimate as well
as its dependence on the waveform employed.

The present paper offers a new approach to wideband
quantitative imaging: a time-domain inverse scattering
method that overcomes some of the limitations of previous
frequency-domain and time-domain quantitative imaging
methods. The new method provides tomographic reconstruc-
tions of unknown scattering media using the entire available
bandwidth of the signals employed. Reconstructions are per-
formed using scattering data measured on a surface sur-
rounding the region of interest, so that the method is well
suited to ultrasonic mammography. The reconstruction algo-
rithm is derived as a simple delay-and-sum formula similar
to synthetic-aperture algorithms employed in conventional
clinical scanners. However, unlike current clinical scanners,
the present method can provide quantitative images of tissue
properties such as the spatially dependent sound speed. Re-
constructions obtained in this manner are equivalent to re-
constructions  obtained by combining conventional
frequency-domain diffraction tomography reconstructions
for all frequencies within the signal bandwidth of interest.
The current method, however, can be even more efficient
than single-frequency diffraction tomography. The method is
applicable both to two-dimensional and three-dimensional
image reconstruction. The direct time-domain nature of the
reconstruction algorithm allows straightforward incorpora-
tion of depth- and frequency-dependent amplitude correction
to compensate for medium absorption as well as aberration
correction methods to overcome limitations of the Born ap-
proximation.

I. THEORY
A. The time-domain reconstruction algorithm

An inverse scattering algorithm, applicable to quantita-
tive imaging of tissue and other inhomogeneous media, is
derived below. For simplicity of derivation, the medium is
modeled as a fluid medium defined by the sound speed con-
trast function

CZ

0
c(r)?

y(r)= -1, 1)

3062 J. Acoust. Soc. Am., Vol. 106, No. 6, December 1999

FIG. 1. Scattering configuration. An incident pressure pulse f(t— a-r/c) is
scattered by an inhomogeneous medium and the time-domain scattered pres-
sure py(0,a,t) is measured at a radius R in the far field.

where ¢ is a background sound speed and c(r) is the spa-
tially dependent sound speed defined at all points r. For the
scope of the initial derivation, the medium is assumed to
have constant density, no absorption, and weak scattering
characteristics; extensions to the reconstruction algorithm
that overcome these limiting assumptions are discussed in
the following section.

For the model of the scattering medium represented by
Eq. (1), the time-domain scattered acoustic pressure p(r,t)
obeys the wave equation®

1 &*py(r,t)  ¥(r) é*p(r.1)

c% at? c(z) at?

where p(r,t) is the total acoustic pressure in the medium.
The scattering configuration considered here is sketched

in Fig. 1. The medium is subjected to a pulsatile plane wave
propagating in the direction of the unit vector a,

Pin(r,@.t)=f(t—r-alcy), ©)
where f is the time-domain waveform and cg is the back-
ground sound speed. The scattered wavefield p, (0, a,t) is
measured at a fixed radius R in the far field, where @ corre-
sponds to the direction unit vector of a receiving transducer
element. (Alternatively, if scattering measurements are made
in the near field, the far-field acoustic pressure can be com-
puted using exact transforms that represent propagation
through a homogeneous medium.'6)

A general time-domain solution for the wave equation
(2), valid for two-dimensional (2D) or three-dimensional
(3D) scattering, is then

Vzps(r’t)_

; @

ps( 0,a,t)=J’ Ps(0,a,0)e” “dw, 4)

where p(0,a,0) is a single frequency component of the
scattered wavefield,

o]

1 .
H = iwt
P (0, a,0)= 3 f_w ps( 0, a,t)e'“dt, (5)

given exactly by?
ﬁs(0,a,w)=k2f(w)f Go(RO-rg,0)

X 'Y(ro)ﬁ(l'9avw)dvo- (6)
In Eq. (6), k is the wave number w/c and p(ry, @, ) is the
total acoustic pressure associated with the unit-amplitude in-
cident plane wave ¢*®T0. The integral in Eq. (6) is taken
over the entire support of y in R? for 2D scattering or in R>
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for 3D scattering. The free-space Green’s function, repre-
sented by G in Eq. (6), is?®
Gy(r,w)= Hol)(kr) for 2D scattering

and M

Gy(r, @)= 7 for 3D scattering,
where H{" is the zeroth-order Hankel function of the first
kind and r is the magnitude of the vector r.

The far-field scattered pressure, when specified for all
incident-wave directions @, measurement directions @, and
times ¢, comprises the data set to be used for reconstruction
of the unknown medium. The inverse scattering problem,
specified by Eq. (6) for a single frequency component, is to
reconstruct the unknown medium contrast y(r) using the
measured data p (6, a, w).

The starting point for the present time-domain inverse
scattering method is conventional single-frequency diffrac-
tion tomography. Under the assumption of weak scattering,
one can make the Born approximation, in which the total
pressure p(a, ) in Eq. (6) is replaced by the plane wave
e'*"'® For scattering measurements made at a radius R in the
far field, the linearized inverse problem of Eq. (6) can be

then solved for any frequency component using filtered
2,1627 ;

backpropagation,” ie.,
vp(r,w)= (w)e B f J'fl’ 6.a)
f(®)
X po( 0, @, 0)e™ D TdS dS,, ®)
where

() ==\
w)=-— s
# 8im3

®(0,a)=]sin(d—a)| in2D,
and 9

Alw)=—=, ®(0,0)=|6—a| in3D.
4

30
Each surface integral in Eq. (8) is performed over the entire
measurement circle for the 2D case and over the entire mea-
surement sphere for the 3D case. Equation (8) provides an
exact solution to the linearized inverse scattering problem for
a single frequency component of the scattered wavefield
ps(0,a,t). The resulting reconstruction, yp(r,®), has spatial
frequency content limited by the ‘“Ewald sphere’’ of radius
2k in wavespace.

To improve upon the single-frequency formulas speci-
fied by Eq. (8), one can extend the spatial-frequency content
of reconstructions by exploiting wideband scattering infor-
mation. The method outlined here synthesizes a ‘‘multiple-
frequency’’ reconstruction Yy (r) by formally integrating
single-frequency reconstructions yg(r,w) over a range of
frequencies w. A generalized formula for this approach can
be written
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oé(w r,o)do
= BB E0e. w0
Joé(w)dw

where g(w) is an appropriate frequency-dependent weight-
ing function. In practice, the weighting function g(w) is cho-
sen to be bandlimited because (for a given set of physical
scattering measurements) the frequency-dependent contrast
yp(r,w) can only be reliably reconstructed for a finite range
of frequencies w associated with the spectra of the incident
waves employed. Thus, the integrands in Eq. (10) are non-
zero only over the support of §(w) and the corresponding
integrals are finite.

Using Eq. (8), and making the definition

N=2 f: 2(w)do, (1

Eq. (10) can be written in the form

BN O
m(r)—;fo g [ [0

X ps(0,a,0)e* 9 74S dS dw. (12)

If the frequency weight ¢(w) is now specified to incor-
porate the incident-pulse spectrum f(®) and to compensate
for the frequency- and dimension-dependent coefficient
i w),

g(w)="—, (13)
Eq. (12) reduces to the form

=3 [ [e00[ poas

X ¢~ KR+ (a=0-11 3 ,dS dS,. (14)

The choice of frequency weight from Eq. (13) allows the
multiple-frequency reconstruction formula of Eq. (12) to be
greatly simplified. Specifically, the inner integral of Eq. (14)
resembles a weighted inverse Fourier transform of the
frequency-domain scattered field p(6,a,w). To obtain an
explicit time-domain expression for v (r), Eq. (14) can be
rewritten using the definition of p,( 6, a,®) from Eq. (5) to
yield

=y [ [0
(a=0)-r

- HdSadSo, (15)

L ps( 6, a,R/cy+

where L denotes the linear operator
Ly1=2 [ ore " do (16
0
and J(w) is the Fourier transform of () using the defini-
tion from Eq. (5).

Using the conjugate symmetry of W w) [ie.,
(0, a,w)= §*(0,a,— ) for any real «(¢)], the real part of
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L[ ()] is shown to be simply (¢). Similarly, using the
convolution theorem as well as the conjugate symmetry of
(1), the imaginary part of L[ ¢(¢)] is seen to be an inverse
Hilbert transform® of y(¢),

"D dr= el )

1 ©
(L= [

This transform, also known as a quadrature filter, applies a
phase shift of 77/2 to each frequency component of the input
signal.

Thus, the time-domain reconstruction formula can fi-
nally be written

=5 [ [ 000 p.c0an

+iH [p,(6,a, T)])dS,,dSa, (18)
where
(a—0)-r
7=Rlcg+ ——. (19)
Co

The direction-dependent weight ®( 8, @), which is the same
as the ‘‘filter’” employed in single-frequency filtered back-
propagation, is given for the 2D and 3D cases by Eq. (9).

Equation (18) is notable in several respects. First, it pro-
vides a linearized reconstruction that employs scattering in-
formation from the entire signal bandwidth without any fre-
quency decomposition of the scattered wavefield. Second,
the delay term 7 corresponds exactly to the delay required to
construct a focus at the point r by delaying and summing the
scattered wavefield p (8, e, 1) for all measurement directions
0 and incident-wave directions a. Thus, the time-domain
reconstruction formula given by Eq. (18) can be regarded as
a quantitative generalization of confocal time-domain syn-
thetic aperture imaging, in which signals are synthetically
delayed and summed for each transmit/receive pair to focus
at the image point of interest.?22%30

A reconstruction formula similar to, although less gen-
eral than, Eq. (18) was independently derived in Ref. 23 for
the two-dimensional inverse scattering problem. In view of
the present derivation, the method of ‘‘probing by plane
pulses” in Ref. 23 can be regarded to yield a multiple-
frequency reconstruction of Re{ yy(r)], while the present
method yields the complex function 7y, (r). In Ref. 23, this
method was proposed as a more convenient way to imple-
ment narrow-band diffraction tomography. However, the nu-
merical results given below show that the reconstruction for-
mula of Eq. (18), when directly implemented using
wideband signals, provides considerable improvement in im-
age quality over narrow-band reconstructions.

Reconstructions using Eq. (18) can be performed using
any pulse waveform. However, the frequency compounding
defined by Eq. (10) is most straightforwardly interpreted if
the frequency weight () has a phase that is independent of
frequency. This criterion can be met, for instance, if the in-
cident pulse waveform f(¢) is even in time,

f=f(-1), (20)
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so that f(w) is purely real. [Similarly, if the incident pulse
waveform is odd in time, f(®) is purely imaginary and Eq.
(18) can still be employed.]

However, supposition of a frequency-independent phase
for f(w) does not result in any loss of generality. For any
linear-phase signal, such that the Fourier transform has the
form

F0)=If(w)le*, @n

an additional delay term of magnitude { can be applied to all
scattered signals to obtain the signals associated with the

0w>0,

purely-real spectrum |f(®)|. In general, the scattered field
associated with a desired waveform f(¢) can be determined
for an arbitrary waveform u(¢) from the deconvolution op-
eration

f(®)

[ps(0, ‘Y,t)]f(z)=F—1 “‘“—)[Px( 0.a.t)],0 l (22)

w(w

For stable deconvolution using Eq. (22), the desired f‘(a))
should not have significant frequency components outside
the bandwidth of u(w).

B. Extensions to the reconstruction algorithm

For large tissue structures at high ultrasonic frequencies,
weak scattering approximations such as the Born approxima-
tion are of limited validity. Thus, for problems of interest to
medical ultrasonic imaging, reconstructed image quality can
be improved by aberration correction methods that incorpo-
rate higher-order scattering and propagation effects. The
present time-domain reconstruction formula (18) provides a
natural framework for quantitative imaging with aberration
correction. In general, if the background medium is known
or can be estimated, the received scattered signals can be
processed to provide an estimate of the scattered field that
would be measured for the same scatterer within a homoge-
neous background medium. This approach essentially re-
moves higher-order scattering effects from the measured far
field scattering, so that a Born inversion can be performed on
the modified data; similar processes occur implicitly in many
nonlinear inverse scattering methods.’!

For example, a simple implementation of aberration cor-
rection can be derived if one makes the assumption that
background inhomogeneities result only in cumulative de-
lays (or advances) of the incident and scattered wavefronts.
This crude model does not include many propagation and
scattering effects important to ultrasonic aberration, but has
been shown to provide a reasonable first approximation of
local delays in wavefronts propagating through large-scale
tissue models.*>** Given this approximation, the total delay
for an angle ¢ and a point position r is given by

sr(r)= f (& dE-—, (23)
£ Co

where the integral is performed along the line that joins the

spatial points r and R ¢, Aberration-corrected reconstruc-

tions can then be performed using Eq. (18) with 7 replaced

by the corrected delay term
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’ (a—0)-r
T R/cy+ — +8r(a,xr)+ 67(0,r). 24)
0

Improved approximations could be obtained by application
of the delay function 67(¢,r) after numerical backpropaga-
tion of the far-field scattered wavefronts through a homoge-
neous medium>*> or by compensation for both delay and
amplitude variations.>¢*" More general, although much more
computationally expensive, aberration correction could also
be performed by synthetic focusing using full-wave numeri-
cal computation of acoustic fields within an estimated real-
ization of the unknown medium. A method of this kind has
been implemented, within the context of a frequency-domain
diffraction tomography method, in Ref. 19.

The present imaging method has been derived using
simplifying assumptions including zero absorption and con-
stant density for the scattering medium. However, these as-
sumptions do not substantially restrict the validity of the
method. For example, the effect of absorption can be reduced
using time-gain compensation, with or without frequency-
dependent corrections,® of received scattered signals for
each transmit/receive pair. Such time-gain compensation
could be performed either using an estimated bulk attenua-
tion for the medium (as with current clinical ultrasound scan-
ners), or by implementation of an adaptive attenuation model
in a manner similar to the time-shift compensation scheme
discussed above.

Inclusion of density variations as well as sound speed
variations adds additional complication to the time-domain
diffraction tomography algorithm derived here. For single-
frequency diffraction tomography in the presence of sound
speed and density variations, the quantity yp(r,w) recon-
structed by Eq. (8) can be shown® to provide an estimate of
a physical quantity that depends both on sound speed varia-
tions and density variations. In the notation used here, this
quantity can be written

1
7'(r)=Y(r)—y(r)yp(r)+ﬁV27p(r), (25)

where the density variation is defined y,=1—po/p(r).
Thus, for time-domain reconstructions of media with density
variations, the reconstruction formula of Eq. (18) will pro-
vide the estimate

1
’YM(T)N'}’(T)_'Y(T)')’,;(T)"' 2 V27p(r)9 (26)
243

where k, is the wave number corresponding to the center
frequency of the pulse employed. For media such as human
tissue, where density variations are fairly small and abrupt
density transitions are rare, the last two terms of Eq. (26) are
small compared to y(r), so that the reconstruction algorithm
derived above can still be regarded to provide an image of
the sound-speed variation function y(r). However, if de-
sired, a reconstruction employing pulses with two distinct
center frequencies could allow separation of sound speed and
density variations by techniques similar to those described in
Ref. 16 or 39.
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Il. COMPUTATIONAL METHODS

The time-domain inverse scattering method described
above has been tested with 2D and 3D synthetic data pre-
pared using three numerical methods: a Born approximation
method for point scatterers and 3D slabs, an exact series
solution for cylindrical inhomogeneities, and a k-space
method for arbitrary 2D inhomogeneous media.

The time-domain waveform employed for all the com-
putations reported here was

f(t)=cos(wyt)e —1220%) (27

where wy=27rf, for a center frequency of f, and o is the
temporal Gaussian parameter. This waveform has the real,
even Fourier transform

A g
f(w)= A ls_w(e—trz(w—wo)zﬂ_*_e—trz(w+a)0)2/2)' (28)

Values used for the computations reported here were f
=2.5 MHz and 0=0.25 us, so that the —6 dB bandwidth
of the signal was 1.5 MHz. These parameters correspond
closely to those of an existing 2048-clement ring
transducer.*

For the case of point scatterers, the contrast function y
was assumed to take the form

M
y(r)=§ p;d(r—ry). (29)

Using the far-field form of the 2D Green’s function and ne-
glecting multiple scattering, Eq. (6) for the scattered far field
can be rewritten as

i Kam).r
pr(Oa0) ==K \[gp ()3 e« (30)

for each frequency component of interest. Time-domain
waveforms were synthesized by using Eq. (30) for each fre-
quency with f(w)>10"3 and inverting the frequency-
domain scattered wavefield by a fast Fourier transform (FFT)
implementation of Eq. (4). The temporal sampling rate em-
ployed was 10 MHz. An analogous formula, with a different
multiplicative constant, was also employed for the 3D case.

The Born approximation was also used to compute
three-dimensional scattering for slab-shaped objects defined
by the equation

y(r)=yoH(a,—|x|)H(a,—|y[)H(a,~|z|). 31

For this object, the linearized forward problem can be solved
analytically. Under the Born approximation, the frequency-
domain scattered far field has the form

ps(0,a,0)= 2f-( w) ')'OaxayazeikR/( mR)
sin[kL (a—6)-e,] sin[kL (a—0)-e,]
kL (a—0)-e, kL,(a—0)-e,
sin[kL,(a—6)-e,]
kL(a—0)-¢e, °

(32)

where e, e,, and e, represent unit vectors in the x, y, and z
directions. The time domain scattered pressure p (0, a,t) is
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obtained, as for the point scatterer case described above, by
inverse transformation of the frequency-domain wavefield
for all frequencies within the bandwidth of interest.

For 2D cylindrical inhomogeneities, an analogous pro-
cedure was followed, except that the frequency-domain scat-
tered wavefield p (0, a,w) was computed using an exact se-
ries solution® for each frequency component of interest. In
implementation of the series solution, summations were trun-
cated when the magnitude of a single coefficient dropped
below 107!2 times the sum of all coefficients.

Solutions were also obtained for arbitrary 2D inhomoge-
neous media using a time-domain k-space method.*! Grid
sizes of 256X 256 points, a spatial step of 0.0833 mm, and a
time step of 0.02734 us were employed. Scattered acoustic
pressure signals on a circle of virtual receivers were recorded
at a sampling rate of 9.144 MHz. The receiver circle, which
had a radius of 3.0 mm in these computations, completely
contained the inhomogeneities used. Far-field waveforms
were computed by Fourier transforming the time-domain
waveforms on the near-field measurement circle, transform-
ing these to far-field waveforms for each frequency using a
numerically exact transformation method,'® and performing
inverse Fourier transformation to yield time-domain far-field
waveforms. All forward and inverse temporal Fourier trans-
forms, as well as angular transforms occurring in the near-
field-far-field transformation,'® were performed by FFT.

The time-domain imaging method was directly imple-
mented using Eq. (18), evaluated using straightforward nu-
merical integration over all incident-wave and measurement
directions employed. The reconstruction formula employed
can be explicitly written as

1 27 (27
YM(r)zN_w_]'O JO |Sin(a~0)|(ps(0,a97-)

+iH [p,(0,a,7)] |dad®,

(cosa—cos 0)-x+(sina—sin ) -y (33)
7=R/cy+

Co

for the 2D case, where a and 8 are the angles corresponding
to the direction vectors e and 6, and as

yM(r)=N—13; f;“ fow f;” forla—ol(ps(o,a,r)

+iH [py( 6, a, T)]) sin(® p)sin(P y)dP,

XdO AP 10 ,,
(a—0)-r
r=Rlco+ ——, (34)
Co

a—0=(cos O ,sin®_,—cosOysinDy)-e,

+(sin @ ,sin® ,—sin O ysin P y)-e,

+(cos P ,—cosPy)-e.

for the 3D case, where 0, and @, are direction angles for

the incident-wave direction @ and ® 4 and P, are direction
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FIG. 2. Point-spread functions for time-domain and single-frequency dif-
fraction tomography methods. In each panel, the vertical scale corresponds
to the relative amplitude of the reconstructed contrast y(r), while the hori-
zontal scale corresponds to number of wavelengths at the center frequency.
(a) Two-dimensional case. (b) Three-dimensional case.

angles for the measurement direction 8. For each case, the
normalization factor N was determined from Eq. (11) with
$(0)=Ff(w)/ ji(w) and u(w) given by Eq. (9). Before
evaluation of the argument 7 for each signal, the time-
domain waveforms were resampled at a sampling rate of 16
times the original rate. This resampling was performed using
FFT-based Fourier interpolation. The inverse Hilbert trans-
form was performed for each signal using an FFT implemen-
tation of Eq. (16). Values of the pressure signals at the time
7 were then determined using linear interpolation between
samples of the resampled waveforms. The integrals of Egs.
(33) and (34) were implemented using discrete summation
over all transmission and measurement directions employed.

Computations were also performed using the time-
domain diffraction tomography algorithm for limited-
aperture data. For these reconstructions, the integrals of Eq.
(33) were evaluated only for angles corresponding to trans-
mitters and receivers within a specified aperture of angular
width ¢, ie.,

la|< @2, |0—m[< /2. (35)

Use of a small value for ¢,, corresponds to use of a small
aperture in pulse-echo mode.
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fl. NUMERICAL RESULTS

Two-dimensional and three-dimensional point-spread
functions (PSF) for the present time-domain diffraction to-
mography method are illustrated in Fig. 2. The time-domain
reconstructions shown here, like the other time-domain re-
constructions shown in this paper, were obtained using a
incident pulse of center frequency 2.5 MHz and a Gaussian
envelope corresponding to a —6 dB bandwidth of 1.5 MHz.
Point-spread functions were determined by reconstructing a
point scatterer located at the origin. For the 2D case, in
which the point scatterer can be regarded as a thin wire,
synthetic scattering data was obtained using the Born ap-
proximation method outlined above for 16 incident-wave di-
rections and 64 measurement directions. The 3D time-
domain reconstruction was obtained using Born data for 72
incident-wave directions and 288 measurement directions,
each evenly spaced on a rectangular grid defined by the
angles ® and ®. For comparison, analogous point-spread
functions are also shown for standard frequency-domain dif-
fraction tomography reconstructions using single-frequency
(2.5 MHz) data.

For the 2D case illustrated in Fig. 2, the time-domain
PSF has a slightly narrower peak, indicating that point reso-
Iution has been slightly improved by the increased band-
width employed in the time domain method. More signifi-
cantly, sidelobes of the time-domain PSF are significantly
smaller than those for the single-frequency PSF (the first
sidelobe is reduced by 7 dB, while the second is reduced by
19 dB), so that contrast resolution for time-domain diffrac-
tion tomography is seen to be much higher than for single-
frequency diffraction tomography. For the 3D case, the time-
domain reconstruction shows a much more dramatic
improvement over the single-frequency reconstruction. In
this case, the time-domain solution shows significant in-
creases in both the point resolution (PSF width at half-
maximum reduced by 27%) and contrast resolution (first
sidelobe reduced by 13 dB and second sidelobe reduced by
18 dB). Furthermore, a comparison of the PSFs for 2D and
3D time-domain reconstruction indicates that much higher
image quality is achievable for 3D time-domain imaging
than for the 2D case. This increase in image quality suggests
that the time-domain diffraction tomography method pro-
posed here may benefit from the overdetermined nature of
the general wideband 3D inverse scattering problem.*>43

The effect of transmit and receive aperture characteris-
tics on image quality is illustrated in Fig. 3. Panels (a) and
(b) of Fig. 3 show the point-spread function for a number of
aperture configurations, each employing 64 measurement di-
rections. Figure 3(a) shows the point-spread function for re-
constructions obtained using 1, 4, 8, and 16 incident-wave
directions. The point scatterer is clearly imaged even for the
reconstruction using one incident-wave direction. Optimal
image quality (indistinguishable from reconstructions with
64 incident-wave directions) is obtained for 16 incident-
wave directions, so that scattering data obtained using one
incident-wave direction for each group of four measurement
directions appears to be sufficient for the present reconstruc-
tion method.

The effect of limited view range on the point spread
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FIG. 3. Effect of aperture characteristics on image quality. Each panel
shows the real part of a time-domain reconstruction, Re [ y,], on a linear
grayscale with white representing the maximum amplitude of |y,,(r)| and
black represents — 1 times the maximum amplitude. (a) Point-spread func-
tions for the same waveform parameters as Fig. 2. Each panel shows an area
of 0.6X0.6 mm?, corresponding to one square wavelength at the center
frequency. Left to right: 1, 4, 8, and 16 incident-wave directions. (b) Point-
spread functions for aperture sizes of /2, m, 3 7/2, and 2 7 radians, format
as in previous panel. (c) Real parts of reconstructions for a homogeneous
cylinder (a=1.0 mm, y=0.02). The area shown in each panel is 2.0X2.0
mm?.Left to right: aperture sizes of /2, m, 37/2, and 2 radians.

function is also illustrated in Fig. 3. Panel (b) shows the
point-spread function for four differently limited apertures,
while panel (c) shows reconstructions of a homogeneous cyl-
inder (¢=1.0 mm, y=0.02) for the same apertures. In each
case, limitation of the transmit and receive apertures to
angles near the backscatter direction (aperture size 7/2) re-
sults in images that resemble a conventional B-scans. Use of
apertures corresponding to pulse-echo mode in the large-
aperture limit (aperture size ) yield higher resolution in all
directions. Using three-fourths of a circular aperture (size
3 #/2) yields image quality close to that for the full aperture
(2 ) case. The characteristics of all these images result from
the set of spatial-frequency vectors interrogated by each
group of scattering measurements.! Apertures with only a
limited range of transmit and receive directions [e.g., the
““b-scan’’ apertures shown in the first column of panels (b)
and (c)] provide only information corresponding to large
spatial frequency vectors oriented nearly on-axis, so that
such images mainly show those edges that are nearly perpen-
dicular to the axis of the aperture.

Reconstructions performed using exact solutions for
scattering from cylindrical inhomogeneities provide a
straightforward means to assess the accuracy of the time-
domain scattering method for a range of object sizes and
contrasts. A number of example reconstructions are shown in
Figs. 4 and 5. The number of measurement directions for all
cylinder reconstructions was chosen based on an empirical
test of the number required for a satisfactory image of a
homogeneous cylinder; for a cylinder of radius 1 mm, the
required number of measurement directions was determined
to be approximately 96. Based on spatial-frequency sampling
considerations, the number of measurement directions was
increased in proportion to the size of the inhomogeneous
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FIG. 4. Cross sections of reconstructed contrast functions y(r) for a cylinder of radius 1 mm, using time-domain (TD) and single-frequency (SF) diffraction
tomography. Waveform parameters are as in Fig. 1. (a) y=0.02. (b) y=0.04. (c) y=0.06. (d) y=0.08.

region to be reconstructed. Since the results shown in Fig. 3
indicate that considerably fewer incident-wave directions
than measurement directions are needed, the number of inci-
dent directions was chosen to be one-quarter the number of
measurement directions in each case.

Cross sections of time-domain and single-frequency re-
constructions, plotted in Fig. 4, show the relative accuracy of
each reconstruction method for a cylinder of 1-mm radius
and purely real contrast ranging from y=0.02 to y=0.08.
For the synthetic scattering data in each case, 96 measure-
ment directions and 24 incident-wave directions were em-
ployed. The time-domain reconstructions show improvement
over the single-frequency reconstructions both in improved
contrast resolution (smaller sidelobes outside the support of
the cylinder) and in decreased ringing (Gibbs phenomenon)
artifacts within the support of the cylinder. However, for
increasing contrast values, both methods show similar in-
creases in phase error, as indicated by increased imaginary
parts of the reconstructed contrast. This error results from the
Born approximation, which is based on the assumption that
the incident wave propagates through the inhomogeneous
medium without distortion. Perturbations in the local arrival
time of the incident wavefront, which are more severe for
higher contrasts and larger inhomogeneities, can result in a
scattered field that is phase shifted relative to the ideal case
assumed in the Born approximation; linear inversion of this
phase-distorted data naturally results in a phase-distorted re-
construction of the scattering medium. (A complementary
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explanation of this phase error, based on the unitarity of the
scattering operator, is given in Ref. 19.)

A test of image fidelity for the time-domain reconstruc-
tion method is shown in Fig. 5. The real parts of time-
domain reconstructions are shown as grayscale images for
homogeneous cylinders with radii between 1 and 4 mm and
contrasts between y=0.02 and y=0.08. The number of
measurement directions employed for the synthetic scatter-
ing data was 96 for the 1-mm radius cylinders, 192 for the
2-mm cylinders, 288 for the 3-mm cylinders, and 384 for the
4-mm cylinders. In each case, four incident-wave directions
per measurement direction were used. The first row of this
figure corresponds to the time-domain reconstructions shown
in Fig. 4.

The images shown in Fig. 5 provide a basis for evaluat-
ing the ability of the present time-domain diffraction tomog-
raphy method to image homogeneous objects of various
sizes and contrasts. In this figure, images of Re[ y,] show
uniform quality for small cylinder sizes and contrasts, but
poorer image quality for larger sizes and contrasts. For the
largest size and contrast employed (a=4.0 mm, y=0.08),
the reconstruction primarily shows the edges of the cylinder
and fails to image the interior. Particularly notable is that the
“‘matrix’’ of images in Fig. 5 is nearly diagonal; that is, a
linear increase in object contrast causes image degradation
comparable to a corresponding linear increase in object size.
Thus, a nondimensional parameter directly relevant to image
quality for homogeneous objects is ka y, where k is a domi-
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FIG. 5. Images of time-domain reconstructions for cylinders of varying
radius a and contrast y. Each panel shows the real part of the reconstructed
contrast, Re [ y(r)], for a pulse of center frequency 2.5 MHz and —6 dB
bandwidth 1.5 MHz. The area shown in each panel is 2a X2a. All images
are shown on a linear, bipolar gray scale where white represents the maxi-
mum amplitude of |y,(r)| and black represents —1 times the maximum
amplitude.

nant wave number, a is the object radius, and vy is the object
contrast. Using the wave number ky=10.472 rad/mm corre-
sponding to the center frequency of 2.5 MHz and a sound
speed of 1.5 mm/us, the reconstructions shown in Fig. 5
indicate that the interior of the cylinder is imaged satisfacto-
rily for the approximate range ka y<<2.5. This result is con-
sistent with a previous study of single-frequency diffraction
tomography, in which adequate Born reconstructions of cyl-
inders were obtained for the parameter range ka y<2.2.*

Reconstructions for several scattering objects without
special symmetry are shown in Fig. 6. All of these recon-
structions were performed using synthetic data produced by
the k-space method described in Ref. 41. Synthetic scattering
data were computed for 64 incident-wave directions and 256
measurement directions in each case. The first panel shows a
reconstruction of a cylinder of radius 2.5 mm and contrast
v=—0.0295 with an internal cylinder of radius 0.2 mm and
contrast y=0.0632. These contrast values correspond, based
on tissue parameters given in Ref. 32, to the sound-speed
contrasts of human skeletal muscle for the outer cylinder and
of human fat for the inner cylinder. The second panel shows
a reconstruction of a 2.5-mm-radius cylinder with random
internal structure. The third reconstruction shown employed
a portion of a chest wall tissue map from Ref. 45. In this
case, the synthetic data was obtained using a tissue model®
that incorporates both sound speed and density variations, so
that the reconstructed quantity is given by Eq. (26). In Fig.
6(c), black denotes connective tissue (y=-—0.1073, v,
=0.1134), dark gray denotes muscle (y=—0.0295, Yo
=0.0543), and light gray denotes fat (y=0.0632, v,
=—0.0453).

The real part of each reconstruction in Fig. 6 shows
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FIG. 6. Time-domain reconstructions from full-wave synthetic data for three
arbitrary scattering objects. Each row shows the actual (purely real) contrast
function 7y together with the real and imaginary parts of the reconstructed
contrast function y,,, using the same linear bipolar gray scale for each
panel. Each panel shows a reconstruction area of 5X5 mm?. (a) Cylinder,
radius 2.5 mm, with an internal cylinder of radius 0.2 mm. (b) Cylinder,
radius 2.5 mm, with random internal structure. (c) Tissue structure, with
variable sound speed and density, from chest wall cross section 5L in
Ref. 45.

good image quality, with high resolution and very little evi-
dence of artifacts. Particularly notable is the accurately de-
tailed imaging of internal structure for the random cylinder
and the chest wall cross section. As expected, the density
variations present in the chest wall cross section have not
greatly affected the image appearance; there is, however, a
slight edge enhancement, associated with the Laplacian term
in Eq. (26), at boundaries between tissue regions. Also no-
table is the nearly complete absence of any artifacts outside
the scatterer in each case; this result indicates that high con-
trast resolution has been achieved. However, in each case,
the imaginary part of the reconstruction is nonzero, indicat-
ing that the Born approximation is not fully applicable. The
imaginary parts of each reconstruction are, however, small
compared to the real parts. Thus, simple aberration correc-
tion methods [of which one example is given by Eq. (24)]
could substantially reduce this phase error, as for multiple-
frequency diffraction tomography in Ref. 19.
Three-dimensional reconstructions of a homogeneous
slab are shown in Fig. 7. The scatterer is characterized by Eq.
(31) with ¥=0.01, a,=0.5 mm, a,=1.0 mm, and a,= 1.5
mm. Synthetic data was computed using Eq. (34) for 288
incident-wave directions and 1152 measurement directions,
each evenly spaced in the angles ® and ©. Signal param-
eters were as for the examples above, except that the initial
sampling rate for the time-domain signals was 9.0 MHz. Iso-
surface renderings of the real part of y,, are shown for the
surfaces 7y,,=0.0025. Since the scattering data were ob-
tained using a Born approximation for the 3D case, the
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FIG. 7. Three-dimensional reconstructions of a uniform slab with contrast
y=0.01. Each reconstruction shows an isosurface rendering of the surface
vy =0.0025. Left: single-frequency reconstruction. Right: time-domain re-
construction.

imaginary part of each reconstruction is identically zero for
both reconstructions. Consistent with the point-spread func-
tions shown in Fig. 2, the time-domain reconstruction is
much more accurate than the single-frequency reconstruc-
tion. While the single-frequency reconstruction shows an er-
roneously rippled surface, the time-domain reconstruction is
smooth. The time-domain reconstruction is nearly identical
to the original object except for some rounding of the sharp
edges due to the limited high-frequency content of the signal
employed. The length scale of the rounded edges is on the
order of one-half the wavelength of the highest frequency in
the pulse, i.e., about 0.2 mm for the —6-dB cutoff of 3.25
MHz.

Since three-dimensional inverse scattering is a computa-
tionally demanding problem, comparison of computational
efficiency for single-frequency and time-domain methods is
of interest. For both reconstructions shown in Fig. 7, identi-
cal discretizations of the reconstructed medium were em-
ployed. Both computations included solution of the appli-
cable linearized forward problem as well as the inverse
problem. Nonetheless, the time-domain method was more
efficient than the single-frequency method; the total CPU
time required on a 200-MHz AMD K6 processor was 133.3
CPU min for the time-domain method and 287.4 CPU min
for the single-frequency method. This gain in efficiency was
possible because the greatest computational expense oc-
curred in the ‘‘backpropagation’ of the signals for each re-
construction point. For the single-frequency method, this
step required evaluation of complex exponentials for each
incident-wave direction, measurement direction, and spatial
point. For the time-domain method, however, the computa-
tionally intensive steps (including the forward problem solu-
tion and Fourier interpolation of the scattered signals)
needed only to be performed once for each transmit/receive
pair. For the backpropagation step, performed at each point
in the 3D spatial grid, the time-domain reconstruction
method required only linear interpolation of the oversampled
farfield pressure waveforms.

IV. CONCLUSIONS

A new method for time-domain ultrasound diffraction
tomography has been presented. The method provides quan-
titative images of sound speed variations in unknown media;
when two pulse center frequencies are employed, the method
is also capable of imaging density variations. Reconstruc-
tions performed using this method are equivalent to multiple-
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frequency reconstructions using filtered backpropagation, buf
can be obtained with much greater efficiency.

The time-domain reconstruction algorithm has been de-
rived as a simple filtered delay-and-sum operation applied to
far-field scattered signals. This algorithm is closely related to
time-domain confocal synthetic aperture imaging, so that it
can be considered a generalization of imaging algorithms
employed in current clinical instruments. The simplicity of
the imaging algorithm allows straightforward addition of fea-
tures such as time-gain compensation and aberration correc-
tion.

Numerical results obtained using synthetic data for 2D
and 3D scattering objects show that the time-domain method
can yield significantly higher image quality (and, in some
cases, also greater efficiency) than single-frequency diffrac-
tion tomography. Quantitative reconstructions, obtained us-
ing signal parameters comparable to those for present-day
clinical instruments, show accurate imaging of objects with
simple deterministic structure, random internal structure, and
structure based on a cross-sectional tissue model. The
method is hoped to be useful for diagnostic imaging prob-
lems such as the detection and characterization of lesions in
ultrasonic mammography.
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Abstract— A quantitative ultrasonic imaging method employing
time-domain scattering data is presented. This method provides to-
mographic images of medium properties such as the sound speed
contrast; these images are equivalent to multiple-frequency filtered-
backpropagation reconstructions using all frequencies within the
bandwidth of the incident pulse employed. However, image synthesis is
performed directly in the time domain using coherent combination of
farfield scattered pressure waveforms, delayed and summed to numeri-
cally focus on the unknown medium. The time-domain method is more
efficient than multiple-frequency diffraction tomography methods, and
can, in some cases, be more efficient than single-frequency diffrac-
tion tomography. Example reconstructions, obtained using synthetic
data for two-dimensional and three-dimensional scattering of wide-
band pulses as well as measured scattering data from a 2048-element
ring transducer, show that the time-domain reconstruction method
provides image quality superior to single-frequency reconstructions for
objects of size and contrast relevant to medical imaging problems such
as ultrasonic mammography. The present method is closely related to
existing synthetic-aperture imaging methods such as those employed
in clinical ultrasound scanners. Thus, the new method can be extended
to incorporate available image-enhancement techniques such as time-
gain compensation to correct for medium absorption and aberration
correction methods to reduce error associated with weak scattering ap-
proximations.

I. INTRODUCTION

Quantitative imaging of tissue properties is a potentially
useful technique for diagnosis of cancer and other disease.
Inverse scattering methods such as diffraction tomography
can provide quantitative reconstruction of tissue properties
including sound speed, density, and absorption. However,
although previous inverse scattering methods have achieved
high resolution and quantitative accuracy, such methods
have not yet been incorporated into commercially successful
medical ultrasound imaging systems. Previous methods of
diffraction tomography have usually been based on single-
frequency scattering, while current diagnostic ultrasound
scanners employ wideband time-domain signals. The use
of wideband information in image reconstruction is known
to provide increased point and contrast resolution, both of
which are important for medical diagnosis.

Relatively few previous workers have investigated direct
use of wideband scattering data for inverse scattering meth-
ods analogous to single-frequency diffraction tomography.
A review of several approaches is given in Ref. [1], includ-
ing linear and nonlinear diffraction tomography methods us-
ing scattering data for a number of discrete frequencies [2}-
[4], a direct (but not completely general) time-domain re-
construction algorithm [5], and an extension of the eigen-
function method from Ref. [4] to use the full bandwidth of
the incident pulse waveform [6].

Recently, a new approach to wideband quantitative imag-
ing has been offered: a time-domain inverse scattering
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method that overcomes some of the limitations of previ-
ous frequency-domain and time-domain quantitative imag-
ing methods [1]. In this paper, the new time-domain diffrac-
tion tomography algorithm is briefly reviewed. The capabil-
ities of the method are demonstrated using simulated recon-
structions of two-dimensional and three-dimensional scat-
terers. The practical capability of the method for ultra-
sonic mammography is then illustrated by reconstructions of
tissue—mimickin% fhantoms from scattering data measured
by a 2.5 MHz, 2048-¢lement ring transducer.

II. THEORY

A new time-domain inverse scattering algorithm, appli-
cable to quantitative imaging of tissue and other inhomoge-
neous media, is derived in Ref, [1] and summarized briefly
below. The medium is modeled as a fluid medium defined
by the sound speed contrast function ¥(r) = ¢3/c(r)? — 1,
where cg is a background sound speed and c(r) is the
spatially-dependent sound speed defined at all points r. For
the scope of the present paper, the medium is assumed to
have constant density, no absorption, and weak scattering
characteristics; extensions to the reconstruction algorithm
tha; ([);']ercome these limiting assumptions are discussed in
Ref. [1].

The medium is subjected to a pulsatile plane wave of the
form pipc(r, ,t) = fét —r - afe), where a is a unit
vector in the direction of propagation, f is the time-domain
waveform, and ¢p is the background sound speed. The scat-
tered wavefield p, (0, o, t) is measured at a fixed radius R in
the farfield, where @ corresponds to the direction unit vector
of a receiving transducer element. (Alternatively, if scat-
tering measurements are made in the nearfield, the farfield
acoustic pressure can be computed using exact transforms
that represent propagation through a homogeneous medium
[2].) The farfield scattered pressure, when specified for all
incident-wave directions e, measurement directions @, and
times ¢, comprises the data set to be used for reconstruction
of the unknown medinm. The inverse scattering problem is
to reconstruct the unknown medium contrast (r) using the
scattered field 5,(@, o, w) measured at a fixed radius R.

The starting point for the present time-domain inverse
scattering method is single-frequency filtered backpropaga-
tion [2], [7], [8]. Under the assumption of weak scattering,
such that the Born approximation holds, the solution to the
?ngleifrequency inverse scattering problem is given by the

ormula
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Each surface integral in Eq. (1) is performed over the en-
tire measurement circle for the 2D case and over the entire
measurement sphere for the 3D case. Equation (1) provides
an exact solution to the linearized inverse scattering prob-
lem for a single frequency component of the scattered wave-
field p, (0, e, t). The resulting reconstruction, yg (r, w), has
spatial frequency content limited by the “Ewald sphere” of
radius 2k in wavespace [9].

To improve upon the single-frequency formulas specified
by Eq. (1), one can extend the spatial-frequency content of
reconstructions by exploiting wideband scattering informa-
tion. The method outlined here synthesizes a “multiple-
frequency” reconstruction ya(r) by formally integrating
single-frequency reconstructions yg(r,w) over a range of
frequencies w. A general formula for this approach is

(r) = Jo. §w)vs(r,w) dw
Jo §(w)dw,

where §(w) is an appropriate frequency-dependent weight-
ing function. In practice, the weighting function g(w) is cho-
sen to be bandlimited because (for a given set of physical
scattering measurements) the frequency-dependent contrast
+B(r,w) can only be reliably reconstructed for a finite range
of frequencies w associated with the spectra of the incident
waves employed. Thus, the integrands in Eq. (3) are nonzero
only over the support of §(w) and the corresponding inte-
grals are finite.

If the frequency weighting function is now specified
to incorporate the incident-pulse spectrum as well as the
frequency- and dimension-dependent coefficient fi(w), such

that g(w) = f(w)/(w), Eq. (3) reduces to the form [1]

ym(r) = %// %0, ) (ps(0,0,7)
+iH[p,(0,a,7)]) dSa dSp, where e

(a—-0)-r PR ha
b o N—zf0 §(w) dw,

©)

™

T=R/co+

and H™?! is the inverse Hilbert transform, also known as a
" quadrature filter.

Equation (4) is notable in several respects. First, it pro-
vides a linearized reconstruction that employs scattering in-
formation from the entire signal bandwidth without any fre-
quency decomposition of the scattered wavefield. Second,
the delay term 7 corresponds exactly to the delay required
to construct a focus at the point r by delaying and sum-
ming the scattered wavefield p,(@, ,t) for all measure-
ment directions @ and incident-wave directions c. Thus, the
time-domain reconstruction formula given by Eq. (4) can be
regarded as a quantitative generalization of confocal time-
domain synthetic aperture imaging (e.g., the “gold standard”
beamformer of Ref. [10]), in which signals are synthetically
delayed and summed for each transmit/receive pair to focus
at the image point of interest.
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Pig. 1. Point-spread function for three-dimensional time-domain and
single-frequency diffraction tomography methods. The vertical scale cor-
responds to the relative amplitude of the reconstructed contrast y(r), while
the horizontal scale cotresponds to number of wavelengths at the center

frequency.

III. SIMULATIONS

Below, the time-domain diffraction tomography method
of Ref. [1] is illustrated using results of simulation tests
with 2D and 3D synthetic data. The synthetic scattering
data employed were obtained using a Born approximation
method for point scatterers and 3D slabs, and a k-space
method [11] for arbitrary 2D inhomogeneous media. Ad-
ditional results, presented in Ref. [1], show reconstructions
performed using using exact time-domain solutions for scat-
tering from compressible cylinders as well as reconstruc-
tions from limited-aperture data. The time-domain wave-
form employed for all the simulations reported here was
ft) = cos(27rf02‘e‘t2/(2”2), with fo = 2.5 MHz and
o = 0.25 us, so that the —6 dB bandwidth of the signal
was 1.5 MHz. These parameters correspond closely to those
of the ring transducer used in the measurements reported in
the next section.

The time-domain imaging method was directly imple-
mented using Eq. (4), evaluated using straightforward nu-
merical integration over all incident-wave and measurement
directions employed. The synthetic data employed was sam-
pled at rates slightly larger than the Nyquist frequency. Be-
fore evaluation of the argument 7 for each signal, the time-
domain waveforms were Fourier interpolated at a sampling
rate of 16 times the original rate. This resampling, as well as
the inverse Hilbert transform from Eq. (4), were performed
by FFT. Values of the pressure signals at the time 7 were
then determined using linear interpolation between samples
of the resampled waveforms.

A three-dimensional point-spread function (PSF) for the
present time-domain diffraction tomography method is il-
lustrated in Fig. 1. The PSF was determined by recon-
structing an ideal point scatterer located at the origin. The
time-domain reconstruction shows a dramatic improvement
over the single-frequency reconstruction, with significant
increases in both the point resolution (PSF width at half-
maximum reduced by 27%) and contrast resolution (first
sliéic(:ll]ca)g)e reduced by 13 dB and second sidelobe reduced by

Reconstructions for several arbitrary scattering objects are
shownin Fig. 2. All of these reconstructions were performed
using synthetic data produced by the k-space method de-
scribed in Ref. [11]. Synthetic scattering data were com-
puted for 64 incident-wave directions and 256 measure-
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Fig. 2. Time-domain reconstructions from full-wave synthetic data for
three arbitrary scattering objects. The upper row shows the contrast func-
tion « for each object, while the lower row shows the real part of the
reconstructed contrast yps. Each panel shows a reconstruction area of
5 mm X 5 mm using a linear bipolar gray scale. Left toright: (a) Cylinder,
radius 2.5 mm, with an internal cylinder of radius 0.2 mm. (b) Cylinder,
radius 2.5 mm, with random internal structure. (c) Tissue structure, with
variable sound speed and density, from a chest wall cross section.

ment directions in each case. The first panel shows a re-
construction of a cylinder of radius 2.5 mm and contrast
v = —0.0295 with an internal cylinder of radius 0.2 mm
and contrast v = 0.0632. These contrast values correspond,
based on tissue parameters given in Ref. [12], to the sound-
speed contrasts of human skeletal muscle for the outer cylin-
der and of human fat for the inner cylinder. The second panel
shows a reconstruction of a 2.5 mm-radius cylinder with ran-
dom internal structure. The third reconstruction shown em-
ployed a portion of a chest wall tissue map from Ref. [13].
In this case, the synthetic data was obtained using a tissue
model that incorporates both sound speed and density vari-
ations, so that the actual reconstructed quantity is slightly
different from 7ps [1]. In Fig. 2(c), black denotes connec-
}ive tissue, dark gray denotes muscle, and light gray denotes
at.

The real part of each reconstruction in Fig. 2 shows good
image quality, with high resolution and very little evidence
of artifacts. Particularly notable is the accurately detailed
imaging of internal structure for the random cylinder and the
chest wall cross section. As discussed in Ref. [1], the den-
sity variations present in the chest wall cross section have
not greatly affected the image appearance; there is, however,
a slight edge enhancement at boundaries between tissue re-
gions. Also notable is the nearly-complete absence of any
artifacts outside the scatterer in each case; this result indi-
cates that high contrast resolution has been achieved.

Three-dimensional reconstructions of a homogeneous
slab with sound s;eed contrast v = 0.01 and dimensions
1 mm x 2 mm X 3 mm, are shown in Fig. 3. Synthetic data
was computed using a weak scattering approximation for
288 incident-wave directions and 1152 measurement direc-
tions, each evenly spaced in the angles ® and ©. Isosurface
renderings of the real part of the reconstructed yas are shown
for the surfaces ypr = 0.0025. Consistent with the point-
spread function shown in Fig. 1, the time-domain recon-
struction is much more accurate than the single-frequency
reconstruction. While the single-frequency reconstruction
shows an erroneously rippled surface, the time-domain re-
construction is smooth. The time-domain reconstruction is
nearly identical to the original object except for some round-
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Fig. 3. Three-dimensional reconstructions of a uniform slab with contrast
v = 0.01. Each reconstruction shows an isosurface rendering of the surface
ym = 0.0025. Left: single-frequency reconstruction. Right: time-domain
reconstruction.

Fig. 4. Reconstructions of three phantoms from measured scattering data.
Each panel shows an area of 9 mm X 9 mm using a bipolar logarithmic
scale with a 30 dB dynamic range. Left to right: (a) Homogeneous agar
cylinder. (b) Agar with glass spheres. (c) Agar with glass spheres and three
nylon filaments.

ing of the sharp edges due to the limited high-frequency con-
tent of the signal employed. The length scale of the rounded
edges is on the order of one-half the wavelength of the high-
est frequency in the pulse, i.e., about 0.2 mm for the —6 dB
cutoff of 3.25 MHz. Notable is that the time-domain method
was more efficient than the single-frequency method in this
case; the total CPU time required on a 233 MHz Pentium II
processor was 100.0 CPU min for the time-domain method
and 233.4 CPU min for the single-frequency method (both
computations included solution of the applicable linearized
forward problem as well as the inverse problem). This gain
in efficiency was possible because the greatest computa-
tional expense occurred in the “backpropagation” of the sig-
nals, which required evaluation of complex exponentials for
the single-frequency method, but only linear interpolation of
the oversampled farfield pressure waveforms for the time-
domain method.

IV. MEASUREMENTS

The practical capability of the time-domain diffraction to-
mography method to image tissue-like media has been tested
using measured scattering data for three tissue-mimicking
phantoms, each of diameter 6 mm. Details of the phan-
tom construction and measurement procedure are given in
Ref. [6] and briefly summarized here. The phantoms are pri-
marily composed of agar (nominal sound speed 1510 m/s);
one is homogeneous, another contains tiny (subresolution),
randomly distributed glass beads, and a third contains three
nylon filaments as well as glass beads. Measurements were
made using a ring transducer system [14] that consists of
2048 elements, each of which can be used independently
as a transmitter or receiver. This fixed transducer config-
uration avoids signal degradation from phase jitter and ex-
cessive scanning time associated with moving transducers.
The control electronics associated with the ring transducer
provide the capability to program arbitrary transmit wave-
forms. The element pitch is 0.23 mm, less than one half of
the wavelength at the nominal center frequency of 2.5 MHz,

Spatially-limited plane wave pulses were transmitted
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from 128 positions equally S{aaced around the ring. To con-
struct the spatially-limited plane waves, a 4 mm-width co-
sine rolloff was added to each side of a 10 mm-width uni-
form central region to provide a smooth transition in ampli-
tude and reduce wavefront spreading. A backpropagation
method [15] was then used to obtain the transmit waveforms
that produced the desired incident wave.

The incident field (without the scattering object) and the
total field (with the scattering object) were measured around
the ring for each incident view. To compensate for sound
speed changes due to water temperature variations, the back-
ground sound speed was tracked using a probe beam during
the measurement of both the incident and total fields. The
sound speed in the background was estimated from knowl-
edge of the arrival time and the travel distance of the probe
beam, which was a spatially limited plane wave directed
to the side of the phantom. The resultin% speed estimate
was used to equalize the time scale of all waveforms. A
temperature-compensated incident field p;(8, a, t) was sub-
tracted from the total field p(@, c, t) to obtain the scattered
field ps(ex, 0,¢). Finally, wavefields were extrapolated to
128 measurement positions at a radius of 7500 mm by an
exact spatio-temporal transformation [2], [6].

Far-field scattered waveforms for each incident-wave di-
rection were further processed by a deconvolution opera-
tion [1] that compensated for transducer-dependent varia-
tions in the incident pulse. The result for each incident-
wave direction was an estimate of the scattered farfield pres-
sure associated with an ideal incident pulse of the form
f(t) = cos(2m fot) e~t/(20%) with fo = 2.25 MHz and
o = 0.25 ps. The preprocessed data p, (8, , t) were then
inverted using numerical integration of Eq. (4). The inver-
sion procedure was the same as for the simulations described
above, except that the initial sampling rate was 20 MHz and
that signals were oversampled to 80 MHz by Fourier inter-
polation.

Reconstructions for the three phantoms are shown in
Fig. 4. Each panel shows good reconstruction quality with
a uniform background and high point and contrast resolu-
tion as well as quantitative accuracy (similar reconstruc-
tions, obtained using an eigenfunction-based inverse scat-
tering method, are presented in Ref. [6]). The subresolution
glass spheres do not cause speckle as in pulse-echo B-scan
imaging, but instead appear as slight local variations in con-
trast consistent with weak point scatterers. Both nylon fila-
ments and glass spheres appear dark because higher sound
speed corresponds to negative contrast -y as defined above.
In panel (c), reconstructions of the nylon wires show slight
sidelobe artifacts; these artifacts could be removed by care-
ful choice of an optimal pulse f(t) in the preprocessing of
the scattered field [6].

V. CONCLUSIONS

A new method for time-domain ultrasound diffraction to-
mography has been presented and validated using synthetic
and measured scattering data. The method provides quanti-
tative images of sound speed variations in unknown media.
These reconstructions are equivalent to multiple-frequency
reconstructions using filtered backprop{glhgation, but can be
obtained with much greater efficiency. The time-domain re-
construction algorithm has been derived as a simple filtered
delay-and-sum operation, closely related to time-domain
confocal synthetic aperture imaging, so that it can be con-
sidered a generalization of imaging algorithms employed in
current clinical instruments. The simplicity of the imaging

1999 IEEE Ultrasonics Symposium

(c) 1999 IEEE

algorithm allows straightforward addition of features such
as time-gain compensation and aberration correction.
Numerical results obtained using synthetic and measured
data show that the time-domain method can yield signifi-
cantly higher image quality (and, in some cases, also greater
efficiency) than single-frequency diffraction tomography.
Quantitative reconstructions, obtained using signal param-
eters comparable to those for present-day clinical instru-
ments, show accurate imaging of objects with simple deter-
ministic structure, random internal structure, and structure
based on a cross-sectional tissue model. Reconstructions of
tissue-mimicking phantoms suggest that the method will be
useful for diagnostic imaging problems such as the detection
and characterization of lesions in ultrasonic mammography.
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A finite-difference time-domain model for ultrasonic pulse propagation through soft tissue has been
extended to incorporate absorption effects as well as longitudinal-wave propagation in cartilage and
bone. This extended model has been used to simulate ultrasonic propagation through anatomically
detailed representations of chest wall structure. The inhomogeneous chest wall tissue is represented
by two-dimensional maps determined by staining chest wall cross sections to distinguish between
tissue types, digitally scanning the stained cross sections, and mapping each pixel of the scanned
images to fat, muscle, connective tissue, cartilage, or bone. Each pixel of the tissue map is then
assigned a sound speed, density, and absorption value determined from published measurements and
assumed to be representative of the local tissue type. Computational results for energy level
fluctuations and arrival time fluctuations show qualitative agreement with measurements performed
on the same specimens, but show significantly less waveform distortion than measurements.
Visualization of simulated tissue—ultrasound interactions in the chest wall shows possible
mechanisms for image aberration in echocardiography, including effects associated with reflection
and diffraction caused by rib structures. A comparison of distortion effects for varying pulse center
frequencies shows that, for soft tissue paths through the chest wall, energy level and waveform
distortion increase markedly with rising ultrasonic frequency and that arrival-time fluctuations
increase to a lesser degree. © 1999 Acoustical Society of America. [S0001-4966(99)03212-9]

PACS numbers: 43.80.Qf, 43.80.Cs, 43.58.Ta, 43.20.Fn [FD]

INTRODUCTION

Echocardiography is widely employed for diagnosis of
cardiac diseases including valvular defects, pericardial effu-
sion, and wall motion abnormalities.! Commonly, echocar-
diography is performed noninvasively through the chest
(transthoracic) using an external probe placed on the chest
wall. The chest wall, however, can considerably degrade im-
age quality because acoustic paths between the skin and
heart may contain ribs and cartilage as well as inhomoge-
neous muscle and fatty tissue. The result is that as many as
10-30% of patients cannot be successfully imaged with
present transthoracic techniques.* This limitation of transtho-
racic echocardiography has led to the development of transe-
sophageal echocardiography, in which the heart is imaged by
a transducer inserted into the esophagus.'™ Although transe-
sophageal echocardiography provides superior image qual-

“Ppresent address: Department of Meteorology, The Pennsylvania State Uni-
versity, University Park, PA 16802.

ity, resulting in high diagnostic sensitivity and specificity,
the invasiveness of the procedure is accompanied by in-
creased risk.3™® For this reason, improvements in the nonin-
vasive transthoracic approach are desirable, for example, by
the development of methods to compensate for image degra-
dation caused by the chest wall.

An understanding of ultrasonic aberration produced by
the chest wall is important to the development of appropriate
compensation methods for transthoracic ultrasonic imaging.
Direct measurements of ultrasonic distortion produced by
chest wall specimens’® have been helpful. Results reported
in Ref. 7 show that propagation through the chest wall causes
substantial beam distortion. However, that study did not dis-
tinguish the effect of soft tissue from effects caused by rib
structures. In Ref. 8, a detailed study of distortion caused by
soft tissue paths indicates that soft tissue distortion in the
chest wall is substantially less than the corresponding distor-
tion in the human abdominal wall. However, distortion
caused by ribs was only treated qualitatively in the latter
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study because the physical mechanisms of rib-induced dis-
tortion could not be adequately described by the method re-
ported there. Although a model of ultrasound propagation in
the chest wall has previously been described,’ that model is
based on coarse depictions of chest wall morphology includ-
ing. homogeneous tissue layers and evenly-spaced,
uniformly-shaped ribs. These previous experiments and
simulations, therefore, have left gaps in the current knowl-
edge about the physical causes of ultrasonic wavefront dis-
tortion caused by the chest wall.

Recent work on the simulation of ultrasonic pulse
propagation'®~1? has provided insight about the wavefront
distortion caused by the human abdominal wall. Although
these studies have provided specific information about the
relationships between soft tissue morphology and ultrasonic
wavefront distortion, the work is not fully applicable to dis-
tortion caused by the human chest wall. The morphology of
chest wall soft tissue is different from that of the abdominal
wall in ways that can affect ultrasonic wavefront distortion.®
Furthermore, imaging through the chest wall is complicated
by ribs that limit the usable acoustic window size and cause
scattering and reflection.

The study reported here applies quantitative simulation
methods, similar to those presented in Refs. 10 and 12, to
anatomically detailed chest wall models that include the ribs.
Accurate depiction of rib—ultrasound interactions requires
not only representation of the strong reflections associated
with sound speed and density contrast between ribs and soft
tissue (already accurately modeled by the finite difference
method of Ref. 10), but also modeling of the strong losses
associated with propagation through bone and cartilage. For
this reason, the finite-difference method described in Ref. 10
has been extended to include tissue-dependent absorption.
Quantitative descriptions of the distortion caused by soft tis-
sues are obtained by statistical analysis of simulated distor-
tion. Visualizations of wavefronts propagating through maps
of chest cross sections provide evidence about physical rela-
tionships between wavefront distortion and the morphology
of ribs and soft tissue structures in the chest wall. Further
insight about wavefront distortion mechanisms is provided
by a comparison of distortion results for incident pulses of
different center frequencies.

l. THEORY

Ultrasonic pulse propagation through the human chest
- wall is modeled here using the equations of motion for a
fluid of variable sound speed, density, and absorption. The
tissue is assumed motionless except for small acoustic per-
turbations. Absorption is included using an adaptation of the
Maxwell solid model,'® in which all absorption effects are
represented by a single relaxation time. This assumption re-
sults in frequency-independent absorption characteristics.
Equivalent treatments of tissue-dependent absorption have
been employed by a number of previous models for ultra-
sonic propagation in biological tissues.'*"'® For such a fluid,
the linearized equations of mass conservation, momentum
conservation, and state can be combined to obtain the first-
order, two-dimensional, coupled propagation equations,
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Here, p(x,y,t) is the acoustic perturbation in fluid pressure,
v(x,y,t) is the vector acoustic particle velocity, p(x,y) is the
ambient density, c(x,y) is the ambient sound speed, and
a(x,y) is an absorption coefficient that is equivalent to the
inverse of a spatially-dependent relaxation time 7(x,y).

The absorption coefficient «, defined as a real quantity,
is related to the energy lost per unit length as follows. The
propagation equations (1) and (2) lead, for plane-wave
propagation of the form p=¢** =" o the dispersion rela-
tion

k=

w
— 41+
c

i 3
~, Q)
where k is the complex wavenumber, w is the (real) radial
frequency 27f, and ¢ is the (real) sound speed. The imagi-
nary part of the wavenumber £ is the absorption in nepers per
unit length. Thus, the absorption parameter « can be ob-
tained by a numerical solution of the equation
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Solution of Eq. (4) results in wavenumbers having a real part
that differs from w/c. Since this discrepancy is less than 1%
over the range of tissue properties employed in the present
study, use of absorption coefficients computed from Eq. (4)
does not significantly affect propagation characteristics ex-
cept by adding the specified -absorption.

Equations (1) and (2) were solved numerically using the
finite-difference time-domain (FDTD) method described in
Refs. 10 and 17. This method is a two-step MacCormack
predictor—corrector algorithm that is fourth-order accurate in
space and second-order accurate in time. The computations
employed a spatial step size of 15 points per wavelength at
the pulse center frequency of 2.3 MHz. Time step sizes were
computed using a Courant—Friedrichs—Lewy number of
0.25. Further details on this class of finite difference algo-
rithms can be found in Refs. 18-20.

The initial condition was chosen to model the experi-
mental configuration in Ref. 8, in which a spatially broad,
nearly planar wavefront was emitted from a wideband,
pulsed, unfocused source far from the tissue layer. The initial
wavefront was represented in the present simulation as a
plane wave pulse propagating in the +y direction:

. @

p(x,9.0)= —sin[ko(y —yg)] e~ 00 20?),
u(x,y,0)=0,
and ' 5)

_r(xy.0)
v(x,y,0)= pe
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where the wavenumber k, is equal to 27f,/c for a center
frequency of fy, o is the Gaussian parameter of the pulse
temporal envelope, and u and v are the x and y components
of the vector acoustic particle velocity v. The spatial Gauss-
ian parameter o was chosen to simulate the bandwidth of the
pulse used in the experiments, as discussed below in the
Method section.

The computational configuration is analogous to that de-
scribed in Ref. 10. The domain of computation is two-
dimensional, with the y direction taken to be parallel to the
direction of propagation and the x direction parallel to the
initial wavefront. As in Ref. 10, periodic boundary condi-
tions were applied on the domain edges that were parallel to
the direction of propagation, while radiation boundary con-
ditions were applied on the edges perpendicular to the direc-
tion of propagation.

il. METHOD

This study employed six chest wall specimens obtained
during the autopsies of four different donors between 79 and
85 years of age at death. One specimen (4L) was from a
white female, while the others were from white males. After
the specimens were obtained, they were stored unfixed at
—20°C and thawed when needed for study. Wavefront dis-
tortion measurements were made on these and other speci-
mens as part of a study described in Ref. 8. In those mea-
surements, 2.3 MHz ultrasonic pulses generated by a 0.5-in.
piston transducer propagated through individual chest wall
specimens immersed in a 37 °C water bath and the transmit-
ted pulses were measured by a 96-element broadband cardiac
array scanned to synthesize a two-dimensional aperture. Sta-
tistics describing wavefront distortion, including arrival time
fluctuations, energy level fluctuations, and wave shape dis-
tortion, were computed for the measured pulses.

For the present study, six of the previously measured
specimens were cut into ~7-mm thick cross sections using
the technique described in Ref. 10. The slices were then
fixed and stained with a modified Gomori’s trichrome stain
according to the procedure detailed in Ref. 21, so that tissue
types could be distinguished. This stain colored muscle tis-
sue red and connective tissue blue while leaving the fat its
natural color. Calcified tissue, including bone and cartilage
in the current specimens, was not differentially stained by
this technique, but the natural contrast between bone, carti-
lage, and marrow was sufficient to allow tissue mapping.
Full-color 300 d.p.i. images of the cross sections were cre-
ated by placing each stained tissue cross section directly onto
the surface of a flatbed digital scanner. Image editing pack-
ages (Adobe Photoshop, Version 3.0, and the Gnu Image
Manipulation Program, Version 1.0) were used to manually
segment the cross sectional images, i.e., to map the images
into regions that corresponded to one of six media. The me-
dia were water (representing water external to specimens or
blood inside blood vessels), fat (including subcutaneous fat,
fat interlaced within muscle layers, and marrow), muscle,
connective tissue (including skin, septa, and fasciae), carti-
lage, and bone (including cortical bone and trabeculae within
cancellous bone).
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The nomenclature employed here for the cross sections
corresponds to that of Ref. 8 for the whole specimens from
which the cross sections were taken; each cross section is
identified by a donor number together with *“L’” or “‘R*’ to
indicate whether the corresponding specimen was taken from
the left or right side of the breastplate. Additional numbers
were used in Ref. 8 to indicate the intercostal space used in
each measurement; here, lower-case letters are used to indi-
cate independent acoustic paths. Wavefront distortion mea-
surement results from four of the specimens employed here
(4L, 5L, 7L, and 7R) were reported in Ref. 8. Distortion
statistics for specimens 8L and 8R were not presented in Ref.
8 because of limited acoustic windows. No new measure-
ments were made for the present study; statistics describing
measured distortion are taken directly from Ref. 8.

The six segmented tissue maps are shown in Fig. 1. All
of the cross sections contain a layer of septated subcutaneous
fat below the skin. Most of the cross sections also include a
layer composed primarily of the major pectoral muscles and
their connective fasciae above the ribs. Between the ribs are
regions of muscle (internal intercostal and external intercos-
tal groups) interlaced with fat. In some cases, additional thin
layers of fat between muscle layers are apparent. Cross sec-
tions 4L and 7R are cut along the intercostal spaces parallel
to the ribs, so that in each a wide cross section of soft tissue
appears. Cross sections 5L, 7L, and 8L are cut perpendicular
to the ribs, so that each contains soft-tissue acoustic paths
with width equal to the width of the corresponding intercos-
tal spaces. Cross section 8R is cut perpendicular to the ster-
num at a location of large curvature in the ribs, so that the
ribs are diagonally sectioned. Several blood vessels appear in
cross sections 4L, 7L, 7R, and 8R; the largest of these is the
internal mammary artery.

The basic structure of the cross sections is consistent
with standard descriptions of chest wall anatomy.zz‘23 Ribs
appear in each cross section; each rib is composed of a *‘cos-
tal cartilage’ near the sternum (shown in most of the cross
sections considered here) attached to a ‘true rib”’ (composed
primarily of cancellous bone) at the edge farther from the
sternum. In the cross sections considered here, the costal
cartilages are primarily composed of calcified cartilage, sur-
rounded by a thin layer of cortical bone (solid, dense bone
with microscopic porous structure), which in turn is sur-
rounded by the periosteum, a thin membrane of connective
tissue. Cross sections 7L and 7R also appear to contain a
small amount of cortical bone in the central portion of the
ribs. This phenomenon may be associated with advanced cal-
cification known to occur in aging humans.** Cancellous
bone, composed of thin trabeculae that form macroscopic
cells filled with marrow, is seen in all the ribs of cross sec-
tion 5L, which was taken at a distance farther from the ster-
num so that the true ribs, rather than the costal cartilages,
were included in this cross section. Some cancellous bone is
also apparent within portions of the ribs of cross sections 4L
and 8R. In each case, the cancellous bone is surrounded by a
thin layer of cortical bone and by the periosteum. A portion
of the sternum, composed of cancellous bone surrounded by
cortical bone, is visible at the left side of cross section 4L.

The density and sound speed grids needed for the finite-

Mast et al.: Simulation of pulse propagation 3667




4L

FIG. 1. Chest tissue maps used in simulations. In each map, blue denotes skin and connective tissue, cyan denotes fat, purple denotes muscle, orange denotes
bone, and green denotes cartilage. Blood vessels appear as small water-filled (white) regions. Simulated apertures are indicated using lower-case letters for
each cross section; the letters correspond to the acoustic path labels used throughout, while the length of the arrow beneath each letter corresponds to the extent
of the simulated aperture. Smaller arrows indicate 55-element (11.60-mm) apertures while large arrows indicate 68-clement (14.28-mm) apertures.

difference computation were created by mapping regions of
the segmented tissue images to reference density and sound
speed values for the five tissue types and water. The water
sound speed and density employed are those of pure water at
body temperature (37.0°C).>% Sound speeds for muscle
and fat were obtained by averaging values for human tissues
given in Refs. 27 and 28. A representative sound speed for
connective tissue was determined using an empirical formula
relating collagen content to ultrasonic sound speed® together
with a measured value for the collagen content of human
skin.’® The sound speed employed for bone was obtained
from an average of values reported in Ref. 31 for
longitudinal-wave propagation in human cortical bone. The
sound speed used here for cartilage is that given in Ref. 32 as
quoted in Ref. 27. Density values for soft tissues were deter-
mined from Ref. 33 by averaging values reported for adipose
tissue, skeletal muscle, and skin, respectively. Density values
employed for bone and cartilage are average values from
Ref. 31.

Absorption values were determined from attenuation
measurements summarized in Ref. 27 for human fat at 37 °C,
human bicep muscle at 37 °C, human skin at 40 °C, human
and bovine cartilage at 23 °C, and human skull (temperature
not reported). Attenuation values reported at other ultrasonic
frequencies were interpolated (or, for the skull data, extrapo-
lated) to obtain values for 2.3 MHz (corresponding to the
pulse center frequency employed here and in Ref. 8) assum-
ing a linear dependence of attenuation on frequency. This
assumed linear dependence is a simplifying approximation;
tissue measurements show that attenuation varies approxi-
mately as axf?, where 8 is typically between 0.9 and 1.5
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for various human soft tissues.* The absorption for water
was estimated by extrapolating frequency- and temperature-
dependent absorption values summarized in Ref. 35 to 2.3
MHz and 37.0 °C. The values of tissue parameters employed
in the present study are given in Table L

The finite-difference program was employed to compute
propagation of a plane wave pulse through each scanned
cross section from the skin to the peritoneal membrane,
mimicking the propagation path employed in the distortion
measurements of Ref. 8. The spatial step size of the finite-
difference grid was chosen to be 0.0442 mm, or 1/15 wave-
length in water at the center frequency of 2.3 MHz. The
temporal step size was chosen to be 0.00725 us, for an op-
timal Courant—Friedrichs—Lewy number cA#/Ax of 0.25.%°
The Gaussian parameter o of the source pulse was chosen to
be 0.4766 mm in accordance with the experimentally mea-
sured pulse bandwidth (for pulses transmitted through a wa-
ter path) of 1.2 MHz. A visual comparison confirmed that the

TABLE L. Assumed physical properties for each tissue type employed in the
simulations. '

Tissue Sound speed Density Absorption
type (mm/us) (g/ec) (dB/mm)
Water . 1.524 0.993 0.0007
Fat 1.478 0.950 0.12
Muscle 1.547 1.050 0.21
Connective 1.613 1.120 0.37
Cartilage 1.665 1.098 0.97
Bone 3.540 1.990 4.37
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gimulated pulse closely matched the measured pulses in
shape and length.

Each simulation was performed on a workstation with
128 MB of random-access memory. Finite-difference grids
on the order of 15001000 points were employed. At each
time step, the wave field was updated on a grid subset chosen
to include the entire support of the acoustic wave but to
exclude quiescent regions. The entire pressure field was
saved as a raster image at intervals of 0.725 us for later
visualization. The computation time for each simulation was
on the order of five hours.*

Signals were recorded for 8.62 us at a sampling fre-
quency of 138 MHz by simulated apertures with dimensions
close to those in the experimental study of Ref. 8. Positions
of all simulated apertures employed are sketched in Fig. 1.
The simulation of receiving elements was performed by in-
tegrating the locally-computed pressure over the element
pitch of 0.21 mm. For cross sections cut parallel to the ribs,
the simulated apertures contained 68 elements for an aperture
width of 14.28 mm. For cross sections cut perpendicular to
the ribs, 55 simulated elements were used to form 11.55 mm
apertures. Element directivity effects were implicitly incor-
porated by the integration of acoustic fields over the width of
each element; the resulting directivity functions correspond
to those for an idealized line element of width 0.21 mm.

A one-dimensional version of the reference waveform
method!®*” was used to calculate the arrival time of the pulse
at each receiving position in the simulation data. In this
method, the relative arrival time of each received waveform
is computed by cross-correlation with a reference waveform.
The arrival time fluctuations across the receiving aperture are
then calculated by subtracting a linear fit from these calcu-
lated arrival times, and the root-mean-square value of these
fluctuations is computed. Energy level fluctuations in the
data were calculated by summing the squared amplitudes of
each waveform over a 2.4-us window that isolated the main
pulse, converting to decibel units, and subtracting the best
linear fit from the resulting values. As for polynomial fits
previously employed in wavefront distortion measurements,’
the purpose of the linear fit removal in each case was to
compensate for gross changes in tissue thickness across the
array. Variations in’ pulse shape across the aperture were
evaluated using the waveform similarity factor;”’ this quan-
tity, which can be considered a generalized cross-correlation
coefficient, has a maximum of unity when all received wave-
forms are identically shaped.

To test the frequency dependence of chest wall wave-
front distortion, propagation through eight portions of speci-
mens, each containing only soft tissue, was also computed
for wavefronts having center frequencies of 1.6 and 3.0
MHz. In each case, the initial wavefront was chosen to have
the same temporal envelope as above. The absorption coef-
ficient at these frequencies for each tissue type was extrapo-
lated from the value employed at 2.3 MHz using the assump-
tion that absorption depended linearly on the center
frequency. The spatial and temporal sampling rates were also
varied in inverse proportion to the pulse center frequency.
All runs were otherwise identical in configuration and pro-
cessing to those described above.
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TABLE 1I. Statistics of simulated wavefront distortion caused by thirteen
soft tissue paths within chest wall cross sections. The ‘‘Path>’ column shows
the cross section label and aperture letter for each path; these labels corre-
spond to those shown in Fig. 1. The statistics shown include the average
specimen thickness for the tissue path considered, rms values and correla-
tion lengths (CL) of the arrival time fluctuations (ATF) and the energy level
fluctuations (ELF), the waveform similarity factor (WSF), and the total at-
tenuation.

ATF ELF
Thickness s CL ms CL Attenuation
Path (mm) (ns) (mm) (dB) (mm) WSF (dB)
4L-c 154 320 060 198 1.68 0.981 5.62
4L-d 12.7 100 258 046 123 0999 4.08
4L-e 16.0 100 137 161 174 0.998 5.26
4L 17.0 173 248 092 1.61 0.999 5.33
5L-a 11.0 116 095 151 1.13 0991 4.29
S5L-¢ 15.0 148 103 115 119 0.99% 5.01
7L-a 16.2 168 264 095 129 0.999 5.46
7L-b 149 225 266 119 1.61 0.998 491
7R-c 17.7 174 177 252 207 0.997 5.83
7R-d 21.0 83 110 085 179 0999 7.07
7R-e 24.7 137 137 106 1.62 0997 8.69
8R-a 23.8 266 178 258 140 0992 7.76
8R-b 222 299 144 195 1.11 0989 6.09
Mean 17.5 178 167 144 150 0.995 5.80
St. Dev. 42 7.8 071 0.66 030 0.005 1.33
lll. RESULTS

Simulated wavefront distortion results for 13 soft tissue
paths (i.e., paths in which wavefront distortion was not sig-
nificantly influenced by the ribs) are shown in Table II.
These results indicate that soft tissue paths cause a wide
range of wavefront distortion effects depending on the spe-
cific morphology of each path. For instance, path 7R-c
causes arrival time and energy level fluctuations that are
more than twice the magnitude of those caused by the adja-
cent path 7R-d. This difference is thought to arise from mor-
phological features, including muscle tissue with interlaced
fat and a large amount of connective tissue, of the tissue
within path 7R-c. Also notable is that the specimen thickness
does not closely correspond to variations in distortion. The
largest rms arrival time fluctuation and lowest waveform
similarity factor, for example, are caused by path 4L-c,
which has an average thickness less than the mean for all the
tissue paths.

Wavefront distortion statistics for the 13 soft tissue
paths are graphically summarized in Fig. 2 together with
corresponding statistics for all of the soft tissue measure-
ments reported in Ref. 8. This comparison indicates that
wavefront distortion caused by soft tissues in the chest wall
simulations is comparable to measured distortion. Arrival
time fluctuations and energy level fluctuations for simulated
distortion are slightly less than measured values, but mean
values of both fluctuations for the simulations fall well
within one standard deviation of the corresponding mean
fluctuation for the measurements. The waveform similarity
factor, however, is substantially higher for simulations than
measurements, indicating that simulated waveforms were
distorted considerably less than measured waveforms. Corre-
lation lengths for the simulated distortions are somewhat less
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FIG. 2. Summary of distortion statistics for soft tissue
paths. The bar chart shows mean values of the rms ar-
rival time fluctuations (ATF), rms energy level fluctua-
tions (ELF), correlation lengths (CL) of these fluctua-
tions, and waveform similarity factors (WSF) for the

WSF ’ simulations performed in the present paper and the ex-

periments reported in Ref. 8. Error bars indicate a range
of plus or minus one standard deviation from the mean.
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than measured values. However, consistent with measure-
ments, the mean correlation length of the simulated arrival
time fluctuations is greater than that for the simulated energy
level fluctuations.

As in Ref. 8, rib structures were found to cause much
more distortion than soft tissue alone. The varied nature of
distortion caused by rib effects is illustrated in Fig. 3, which
shows three representative sets of measured signals for speci-
men 8L. These measurements were made during the study
reported in Ref. 8. The first panel shows 96 adjacent mea-
sured signals, along the array direction (approximately par-
allel to the ribs) for propagation through a tissue path within
an intercostal space. The signals are not severely distorted,;
secondary arrivals are discernible, but are of lower amplitude
than the main arrival. The second panel shows 96 measured
signals for an elevation over a rib. Here, all signals are se-
verely distorted. Multiple arrivals, as well as high-amplitude
spatially-random fluctuations, are seen. The third panel
shows 50 measured signals along the elevation direction
(perpendicular to the ribs), centered over the soft tissue be-
tween the ribs. Here, the main wavefront is curved rather
than straight, an additional arrival behind the main wavefront
is seen, and portions of the signals from over the ribs (at both
edges of the panel) are advanced relative to the signals from
the central soft tissue region.

The present simulations allow more detailed qualitative
and quantitative investigation of rib effects than were pos-
sible from the previous measurements. Propagation through
two rib-influenced paths is illustrated in Figs. 4 and 5, in
which computed ultrasonic pulses are superimposed on por-
tions of the tissue maps from Fig. 1. (Similar visualizations
of propagation through soft human body wall tissue were
shown in Ref. 10.)

Figure 4 shows propagation through a thin rib, com-
posed chiefly of cancellous bone, in cross section 5L (corre-
sponding approximately to path 5L-b). A strong reflection
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FIG. 3. Measured waveforms for three propagation paths in specimen 8L.
Each panel shows received waveforms on a bipolar logarithmic gray scale
with a dynamic range of 40 dB. The horizontal range shown in each panel is
20 mm and the vertical range shown is 6.4 us. (a) Tissue path between two
ribs, in azimuth direction (parallel to ribs). (b} Path including a rib, azimuth
direction. (c) Tissue path including intercostal space between two ribs, el-
evation direction (perpendicular to ribs).
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FIG. 4. Simulated propagation through the central rib in cross section 5L (path 5L-b). Panels (a)—(d) show instantaneous acoustic pressure fields at successive
intervals of 2.17 us. Each panel shows an area that spans 20.32 mm horizontally and 14.58 mm vertically. Logarithmically compressed wavefronts are shown
on a bipolar scale with black representing minimum pressure, white representing maximum pressure, and a dynamic range of 57 dB.

FIG. 5. Simulated propagation through an intercostal space in cross section 8L (path 8L-b). Panels (a)-(d) show instantaneous wavefields at successive
intervals of 3.62 us. Each panel shows an area that spans 28.27 mm horizontaily and 21.20 mm vertically. Wavefronts are shown using the same format as
in Fig. 4.
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occurs at the first interface between bone and soft tissue,
removing a substantial amount of energy from the main
wavefront. The small, high-contrast trabeculae within the rib
cause considerable scattering, as can be observed in panel (b)
of Fig. 4. The scattering causes random fluctuations behind
the main wavefront; these fluctuations somewhat resemble
those seen in the measured data of Fig. 3(b). After passing
through the rib, as seen in panels (c) and (d) of Fig. 4, the
central portion of the wavefront shows substantial attenua-
tion and distortion. However, the average arrival time of the
wavefront is not greatly changed by propagation through the
rib, but is advanced by only about one-half period. This phe-
nomenon apparently occurs because the influence of the
“slow’” marrow (modeled here as fat) counteracts the influ-
ence of the ““fast’” trabeculae. Noteworthy is that the pre-
dominant ultrasonic wavelength has increased after propaga-
tion through the rib, so that the effective center frequency of
the wavefront has been lowered. Since the absorption model
used in the present study includes only frequency-
independent absorption, the loss of short-wavelength compo-
nents in this simulation results only from frequency-
dependent scattering .caused by the trabeculae.

Propagation within path 8L-b, which includes two larger
ribs and the corresponding intercostal space, is illustrated in
Fig. 5. At the position of the cross section, these ribs are
composed primarily of cartilage and surrounded by a thin
layer of cortical bone. Since the cartilage and bone of these
ribs are modeled as homogeneous structures, small-scale
scattering within these tissues did not occur in this simula-
tion. Instead, the wavefront is reflected from interfaces be-
tween cartilage, bone, and soft tissue.

The visualization shown in Fig. 5 provides physical rea-
sons for all the rib-related distortion phenomena seen in the
measured data of Fig. 3(c). The wavefronts propagating
through the ribs show greater attenuation than that in Fig. 4,
both because of the high absorption of the ribs and because
of the reflections noted above. These wavefronts are also
advanced relative to the wavefront propagating through the
intercostal space, because of the higher sound speed of both
bone and cartilage. The wavefront propagating through the
intercostal space is distorted somewhat by the inhomoge-
neous soft tissue path, as can be observed in panels (b) and
(c). However, much greater distortion results from interac-
tion between the wavefront and the ribs. A rightward-
propagating reflection, seen in panels (b) and (c), combines
with the main wavefront in panel (d) to result in severe dis-
tortion at the right side of the central wavefront. A leftward-
propagating reflection from the other rib is also apparent.
Furthermore, diffraction from the edges of the ribs results in
large curvature of the soft tissue wavefront.

Distortion and attenuation statistics for a variety of
simulations employing rib-influenced paths are shown in
Table III. Footnotes in Table III indicate physical causes of
distortion present within each path. A variety of distortion
and attenuation mechanisms are illustrated. Propagation
‘through small intercostal spaces (paths 4L-a, 8L-b, 8L-f, and
7R-a) causes diffraction effects that introduce substantial
curvature into the wavefront, as seen in Fig. 5. This large-
scale wavefront curvature is associated with large arrival
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TABLE III. Statistics of simulated wavefront distortion caused by fourteen
tissue paths including rib structures. The footnotes associated with the label
for each path indicate morphological features and physical phenomena that
affected the wavefront distortion computed for that path. The format is
analogous to that in Table I

ATF ELF
Thickness rms CLL. ms CL Attenuation
Path (mm) (ns) (mm) (dB) (mm) WSF (dB)
4L 210 2603 300 258 272 0968 1533
4L-b%¢ 176 1619 190 416 149 0.641 4335
SL-bP 14.2 925 0.69 306 192 0775 2687
TL-cS® 17.8 472 158 533 204 0.958 19.66
TR-a*>¢ 304 1231 212 380 1.78 0960  16.57
TR-b® 243 1656 271 6.88 207 0274  43.06
8L-a° 253 1139 118 775 229 0907 3244
8L-b*d 22.8 1097 205 343 122 0974 10.28
8L-c° 28.8 1340 275 3.04 157 0944 4047
8L-d¢ 23.6 789 0.64 3.06 1.55 0.950 6.78
8L-¢° 264 2088 191 362 150 0810  44.27
8L-fd 285 1699 179 502 195 0916 10.70
8L-g° 276 2108 140 336 135 0.892 4422
8R-c® 24.9 814 208 276 125 0962 4432

“Small intercostal spaces.
®Cancellous bone.

“Cortical bone and cartilage.
dStrong rib reflections.
“Cortical bone within cartilage.

time fluctuation values although the wavefronts generally ap-
pear to be locally smooth. Interference between directly-
transmitted and rib-reflected wavefronts (paths 4L-a, 8L-b,
8L-d, 8L-f, and 7R-a) introduces arrival time, energy level,
and waveform distortion substantially greater than that for
soft tissue paths without ribs. Propagation through cancel-
lous bone (paths 4L-a, 4L-b, 5L-b, and 8R-c) results in con-
siderable attenuation and large waveform distortion, while
propagation through cortical bone and cartilage (paths 4L-a,
4L-b, 8L-a, 8L-c, 8L-e, 8L-g, 7L-c, 7R-a, 7R-b, and 8R-c)
results in even larger attenuation but smaller distortion.
Where bone is embedded within cartilage (paths 7L-c and
7R-b), additional scattering also occurs. For the path includ-
ing a large bone inclusion (path 7R-b), this scattering results
in an extremely high energy level and waveform distortion.

Computed frequency-dependent wavefront distortion
statistics are summarized in Fig. 6. Tissue paths used for
these computations, none of which include rib structures, are
those labeled 4L-d, 4L-f, 5L-a, 5L-c, 8R-a, 8R-b, 7L-a, and
7L-b in Fig. 1. The results shown in Fig. 6 indicate that
arrival time fluctuations, energy level fluctuations, and wave-
form distortion all become more severe with increasing pulse
frequency. The most dramatic change is in the energy level
distortion; on average, the rms energy level fluctuations for
the 3.0-MHz signals are 2.3 times those for the 1.6-MHz
signals. Correlation lengths of both arrival time and energy
level fluctuations decrease with frequency, so that the pre-
dominant length scales of ultrasonic wavefront distortion are
seen to decrease with the ultrasonic wavelength. As with the
rms distortion statistics, the most dramatic frequency-
dependent change is in the energy level fluctuations. Still,
even the high-frequency pulses here show substantially
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FIG. 6. Summary of simulated frequency-dependent
distortion results. Mean rms arrival time fluctuations
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smaller distortion than that previously observed in experi-
ments and simulations for the human abdominal wall,10-12.38

IV. DISCUSSION

As with earlier simulations of propagation through
tissue,%1% the current study shows qualitative agreement
with measured wavefront distortion results for similar
specimtans.8 However, the accuracy of the present model is
limited by simplifications of true tissue structure. In particu-
lar, the computational model here does not account for prop-
erty variations within tissue types, tissue microstructure, or
three-dimensional tissue structure. Each of these simplifica-
tions limits the ability of the present model to precisely
mimic experimentally measured ultrasonic wavefront distor-
tion. These limitations are discussed, with respect to soft
tissues, in Ref. 10.

" The modeling of ribs adds additional complication. In
the current study, individual trabeculae were assumed to be
composed of tissue having properties identical to cortical
bone, an assumption known as Wolff’s hypothesis.39 The
validity of this hypothesis has been questioned;“o’41 however,
measured elastic properties of individual trabeculae vary
widely***! and recent work*? has provided support for
Wolff’s hypothesis. Thus, the properties employed here for
trabecular bone can be regarded as reasonable order-of-
magnitude estimates. Likewise, the modeling of marrow as
fat tissue is a simplifying assumption that may have limited
validity, although available data suggest that the density and
sound speed of marrow are close to those for other adipose
tissues.’! In addition, the present model for cartilage is based
on measurements of normal cartilage, while the cartilage
present in the specimens employed here was calcified due to
the age of the donors. However, density measurements made
on eight representative samples of calcified cartilage (two
from specimen 7R, four from specimen 1R, and two from
an unused specimen) resulted in an average density of
0.00111 kg/m®, which is different by only 1% from the den-
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sity assumed here. Since sound speed in calcified tissue has
been empirically shown to be directly related to density, 34
this small change in density suggests that the acoustic prop-
erties of the calcified cartilage in our specimens is close to
that for normal cartilage.

The computations reported here model the chest wall as
a fluid of variable sound speed, density, and compressibility.
This model implicitly neglects shear wave propagation. The
neglect of shear waves in soft tissues is believed to be justi-
fied because the absorption of shear waves in soft tissues is
much greater than absorption of longitudinal waves.** In
calcified tissues, however, significant shear waves are known
to be generated.‘”’48 In the current scattering configuration,
some shear waves are likely generated wherever the rib sur-
face is far from parallel to the wavefront. However, since
shear wave absorption has been found to be somewhat larger
than longitudinal wave absorption for ultrasonic propagation
in bone,*’ the significance of shear-wave propagation within
bone on transmitted ultrasonic wavefronts is questionable.
For this reason, omission of nonlongitudinal waves in the
present study, as in another computational study of ultrasonic
scattering from bone,49 is believed to be justified; however,
further study would be required to confirm this assumption.

The absence of frequency-dependent absorption is a pos-
sible source of error in the present estimates of total tissue
attenuation, energy level fluctuations, and waveform distor-
tion. However, since absorption in tissue increases approxi-
mately linearly with frequency, lower absorption for fre-
quency components below the pulse center frequency would
nearly cancel higher absorption for frequency components
above the center frequency, so that the average absorption
incurred by a wideband pulse should still be computed with
fair accuracy. For this reason, the absence of frequency-
dependent absorption in the calculations reported here is not
considered to be a significant source of error in the computed
attenuation or energy level fluctuation curves. Still, the in-
clusion of frequency-dependent absorption would result in
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additional waveform distortion effects. The lack of this effect
is a likely reason for the lower waveform distortion (higher
waveform similarity factors) obtained from simulations as
compared to measurements. However, the absence of
frequency-dependent absorption effects allowed frequency-
dependent scattering effects to be clearly quantified sepa-
rately from absorption effects.

Although the simulations were planned to match the
measurements of Ref. 8 closely, a number of differences re-
main. The most important of these, as discussed in Ref. 10, is
that the simulations were performed using a two-dimensional
tissue model while the measurements were inherently three-
dimensional. Other differences include details of the source
waveform and wavefront shape, variations in the specimen
orientations and the regions interrogated, and variations in
the distance between the specimen and the real or simulated
receiving aperture. All of these differences could contribute
to discrepancies between measurements and simulations.

In general, most of the simplifying assumptions in the
present tissue model are likely to result in underestimation of
wavefront distortion produced by the human chest wall. The
incorporation of tissue microstructure, spatially-dependent
acoustic properties for each tissue type, shear wave propaga-
tion in bone and cartilage, three-dimensional propagation,
and frequency-dependent absorption could all result in
greater spatial and temporal variations in the propagating
acoustic fields, so that these features could produce simu-
lated distortion with characteristics closer to measurements.
For this reason, distortion statistics computed using the
present tissue model should be interpreted as lower limits for
the statistics of distortion occurring in real chest wall tissue.

Additionally, some of the discrepancy between simu-
lated and measured distortion may be explained by the non-
uniform characteristics of the receiving transducer employed
in the measurements.® The water-path measurements re-
ported in Ref. 8 show arrival time fluctuations (mean 2.21
ns) and energy level fluctuations (mean 0.36 dB); although
small, these fluctuations are comparable to the difference be-
tween the average measured and simulated fluctuations.
Thus, compensation for arrival time and energy level fluc-
tuations due to transducer irregularities could reduce mea-
sured distortion to levels closer to the simulations. Also, the
waveform similarity factor for water path measurements was
0.991,% which indicates greater waveform distortion than the
average value of 0.995 computed here for soft tissue paths.
Thus, compensation of the measured data for transducer
impulse-response variations could raise the measured wave-
form similarity factor to a value in closer agreement with
simulations. :

Previous experimental measurements of wavefront dis-
tortion caused by the human chest wall® have suggested that
distortion caused by chest wall soft tissues is less severe than
that caused by the human abdominal wall.!l*® This differ-
ence has been observed to occur even though average speci-
men thicknesses were comparable in chest wall® and abdomi-
nal wall'"*® measurements. The present results provide
support for these results; arrival time and energy level dis-
tortion by the chest wall was found here to be smaller than
~ that produced by the abdominal wall in previous simulation
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studies.'®!? For the simulations, this difference may be par-
tially explained by the fact that the chest wall specimens
employed here are thinner on average (mean thickness 17.5
mm) than the abdominal wall cross sections employed in
Refs. 10 and 12 (mean thickness 26.7 mm). Another possible
partial explanation is that the pulse center frequency em-
ployed in abdominal wall measurements and simulations was
3.75 MHz, significantly higher than the center frequency of
2.3 MHz for the chest wall measurements and simulations.
Differences in pulse frequency and specimen thickness may
explain the discrepancy in energy level distortion between
the abdominal wall and chest wall, but do not fully explain
the discrepancy in arrival time distortion results. For in-
stance, the mean arrival time and energy level fluctuations
per unit length are 1.02 ns/mm and 0.083 dB/mm for the
present study vs 1.96 ns/mm and 0.105 dB/mm for the ab-
dominal wall cross sections of Ref. 10 and 12. Arrival time

~ distortion was shown here to increase only subtly with in-

creasing pulse frequency, so that this discrepancy in arrival
time fluctuations is not fully explained by pulse frequency
differences. However, energy level fluctuations increase
markedly with frequency for chest wall tissue. Thus, for
equal ultrasonic pulse frequencies, chest wall tissue should
cause energy level distortion per unit length comparable to
that caused by abdominal wall tissue.

It was suggested in Ref. 8 that chest wall morphology
may differ from abdominal morphology in a manner that
results in smaller ultrasonic wavefront distortion. The cross
sections employed here can be compared with those em-
ployed in Refs. 10 and 12 to evaluate the importance of
morphological differences between chest wall and abdominal
wall tissue. One difference between the two groups of cross
sections is the nature of the subcutaneous fat layers. The
abdominal wall cross sections génerally contain thicker fat
layers, containing many more lobular structures than the
chest wall cross sections. Since the high contrast between
septa and fat causes substantial ultrasonic scattering,'*"? this
morphological difference is likely to result in lower overall
energy level and waveform distortion for chest wall tissue
(although, as discussed above, the energy level distortion per
unit propagation length should be comparable). Also, the ab-
dominal wall and chest wall cross sections have a markedly
different structure within the muscle layers that occur below
the subcutaneous fat. The abdominal wall cross sections have
many large-scale features due to aponeuroses (interfaces be-
tween muscle groups, composed of connective tissue and fat)
and large fatty regions. These large-scale features cause large
wavefront fluctuations that are associated with large rms ar-
rival time fluctuations.!®!? In contrast, muscle layers of the
chest wall cross sections considered here contain primarily
smaller-scale structures associated with small islands of in-
terlaced fatty tissue. This morphological difference may re-
sult in lower large-scale arrival time fluctuations but signifi-
cant energy level fluctuations associated with scattering,
consistent with the differences between distortion caused by
soft tissues in the abdominal wall and the chest wall.

The present results for the frequency dependence of dis-
tortion provide further insight into the importance of scatter-
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F

irtg effects relative to large-scale structure in wavefront dis-
tortion caused by soft tissues. If wavefront distortion in the
chest wall were caused only by large-scale tissue structures,
the distortion would be roughly independent of frequency,
since propagation effects are independent of frequency in the
géometric acoustics limit. However, distortion caused by
scattering effects should increase with the pulse frequency
for inhomogeneities of size comparable to the wavelength.
Previous simulation and experimental studies!®~!? on distor-
tion caused by the human abdominal wall have suggested
that energy level fluctuations and waveform distortion are
generally associated with scattering effects, while arrival
time fluctuations are predominantly caused by large-scale
path length differences. The present results, while consistent
with those conclusions, indicate that scattering plays a role in
all types of distortion considered here. Since energy level
fluctuations and waveform similarity factors exhibit more
dramatic increases in distortion with increasing pulse fre-
quency, the present results suggest that scattering is of pri-
mary importance in causing energy level and waveform dis-
tortion and of secondary importance in causing arrival time
distortion.

These results can be employed to evaluate the potential
of various approaches to improve echocardiographic imag-
ing. Available acoustic windows for transthoracic imaging
are severely limited by the presence of the ribs, so that image
quality cannot be significantly improved by an increase of
aperture size. The present results also indicate that use of
higher-frequency probes may provide less benefit than ex-
pected because of frequency-dependent scattering in the
chest wall.

For these reasons, aberration correction methods are po-
tentially important in transthoracic echocardiography, par-
ticularly for higher-frequency imaging. The frequency-
dependent distortion results reported here suggest that
distortion models employing single phase screens may be of
some benefit for aberration correction in echocardiography
through soft tissue paths. The relatively weak dependence of
arrival time fluctuations on pulse frequency suggests that a
large portion of arrival time variations are caused by tissue
structures too large to cause significant frequency-dependent
scattering effects. Similar conclusions regarding the impor-
tance of large-scale structures to arrival time fluctuations
have also been drawn from results presented in Refs. 10 and
12.

Still, the present results, like those from earlier
studies,'®"!2 suggest that single phase screens will not pro-
vide complete correction for distortion caused by soft tissues.
In particular, methods employing single phase screens will
not completely remove distortion caused by scattering. The
sharp increase of amplitude and waveform distortion with

frequency, as well as the moderate increase of arrival time

distortion with frequency, indicate that scattering effects be-
come much more important to ultrasonic aberration as imag-
ing frequencies increase. Furthermore, phase screen models
do not inherently account for distortion caused by rib struc-
tures, shown here to produce diffraction, reflection, and scat-
tering. Thus, any attempted correction using only phase
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screen models is likely to provide little improvement in the
presence of strong rib-induced effects.

Other correction models that incorporate rib structures
may provide greater image improvements for the distortions
most important to echocardiography. Processing wavefronts
with techniques such as angular spectrum filtering can re-
move some spurious arrivals,”® although such computations
may be difficult to incorporate into a general correction al-
gorithm. Other possible methods include those incorporating
models of tissue structure. Models incorporating ray
acoustics’ may provide improvement, but implicitly neglect
diffraction and scattering effects, so that aberration correc-
tion would be incomplete, panicularly for small intercostal
spaces. A more complete aberration correction method could
employ synthetic focusing using full-wave numerical com-
putation of acoustic fields within sufficiently accurate models
of tissue structure. This method has been implemented,
within the context of a quantitative frequency-domain in-
verse scattering method, in Ref. 51. However, the results
presented here indicate that distortion caused by soft tissue
and rib structures varies widely based on morphological
variations between (and within) individuals. Thus, for any
general correction method employing models of tissue struc-
ture, separate models of tissue structure must be constructed
for each region of interest.

V. CONCLUSIONS

A computational study of ultrasonic propagation through
the chest wall, including tissue-dependent absorption as well
as detailed anatomical cross sections, has been presented. For
soft tissue paths, computational results for arrival time dis-
tortion, energy level distortion, and correlation lengths of
these distortions are comparable to those reported in previ-
ous chest wall measurements. Both simulations and measure-
ments indicate that arrival time distortion and energy level
distortion caused by soft tissues in the human chest wall is
smaller than that caused by the human abdominal wall. Dif-
ferences in morphology between the abdominal wall and the
chest wall provide a probable explanation for this difference.

Distortion caused by rib structures is much more severe
than that caused by soft tissues. Reflections and diffraction
from rib structures complicate wavefronts that travel through
soft tissue paths adjacent to ribs and can cause arrival time
and energy level fluctuations much greater than those in-
duced by soft tissue structures. Wavefronts propagating di-
rectly through rib structures are attenuated by both internal
absorption and reflection at interfaces between bone, carti-
lage, and soft tissue. Internal scattering within rib structures
causes distortion phenomena that include severe waveform
and energy level distortion, additional attenuation, and low-
ering of the effective frequency for the transmitted pulse.
The strong dependence of distortion on the morphological
details of rib structures presents a major challenge for aber-
ration correction in echocardiography. '

Simulation of propagation through soft tissue paths us-
ing three different pulse frequencies has indicated that the
distortion types investigated here have different frequency
dependence. Arrival time fluctuations increase subtly with
frequency, while energy level and waveform distortion in-
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crease greatly. Thus, a substantial portion of arrival time
fluctuations produced by the chest wall may be explained by
large-scale tissue variations, but some arrival time distortion
and most energy level and waveform distortion apparently
result from' scattering. Thus, correction of wavefront distor-
tion caused by soft tissues should become both more impor-
tant and more challenging as pulse frequencies employed in
imaging systems are increased.

ACKNOWLEDGMENTS

The authors thank Cari Kelly, Tara Jones, Tracy David,
and Michael Pirri for assistance in creating accurate tissue
maps of the chest wall cross sections. The original two-
dimensional version of the distortion estimation software us-
ing the reference waveform method was developed by D.-L.
Donald Liu. Funding for this investigation was provided by
NIH grants No. DK 45533, No. HL 50855, and No. CA
74050, U.S. Army Grant No. DAMD17-98-1-8141, DARPA
Grant N00014-96-0749, and the University of Rochester Di-
agnostic Ultrasound Research Laboratory Industrial Associ-
ates. Some computations were performed at the Cornell Na-
tional Supercomputing Facility, which was supported in part
by the National Science Foundation, New York State, and
the IBM Corporation.

'H. Feigenbaum, Echocardiography (Lea and Febiger, Philadelphia, 1994).

2A. E. Weyman, Principles and Practice of Echocardiography, Sth ed.
(Lea and Febiger, Philadelphia, 1994).

3J. T. T. Chen, Essentials of Cardiac Imaging, 2nd ed. (Lippincott-Raven,
Philadelphia, 1997).

*F. M. Clements and N. P. de Bruijn, Transesophageal Echocardiography
(Little, Brown, and Company, Boston, 1991).

’K.-L. Chan, G. I. Cohen, R. A. Sochowski, and M. G. Baird, “Compli-
cations of transesophageal echocardiography in ambulatory adult patients:
analysis of 1500 consecutive examinations,”’ J. Am. Soc. Echocardiogr. 4,
577-582 (1991).

SW. G. Daniel, R. Erbel, W. Kasper, C. A. Visser, R. Engberding, G. R.
Sutherland, E. Grube, P. Hanrath, B. Maisch, K. Dennig, M. Schartl, P.
Kremer, C. Angermann, S. Iliceto, J. M. Curtius, and A. Miigge, ‘‘Safety
of transesophageal echocardiography: a multicenter survey of 10,419 ex-
amination,”” Circulation 83, 817-821 (1991).

"A. D. Savakus, K. K. Shung, and N. B. Miller, ‘‘Distortions of ultrasonic
field introduced by the rib cage in echocardiography,” J. Clin. Ultrasound
10, 413-419 (1982).

8L. M. Hinkelman, T. L. Szabo, and R. C. Waag, ‘‘Measurements of ul-
trasonic pulse distortion produced by the human chest wall,”’ J. Acoust.
Soc. Am. 101, 2365-2373 (1997).

°Y. Y. Botros, E. S. Ebbini, and J. L. Volakis, *“Two-step hybrid virtual
array-ray (VAR) technique for focusing through the rib cage,”” IEEE
Trans. Ultrason. Ferroelectr. Freq. Control 45, 989-999 (1998).

UT D. Mast, L. M. Hinkelman, M. J. Orr, V. W. Sparrow, and R. C. Waag,
*‘Simulation of ultrasonic pulse propagation through the abdominal wall,”’
J. Acoust. Soc. Am. 102, 1177-1190 (1997).

L. M. Hinkelman, T. D. Mast, L. A. Metley, and R. C. Waag, ‘‘The effect
of abdominal wall morphology on ultrasonic pulse distortion. Part I: Mea-
surements,” J. Acoust. Soc. Am. 104, 3635-3649 (1998).

2T. D. Mast, L. M. Hinkelman, M. J. Orr, and R. C. Waag, ““The effect of
abdominal wall morphology on ultrasonic pulse distortion. Part II: Simu-
lations,”” J. Acoust. Soc. Am. 104, 3651-3664 (1998).

BH. Kolsky, Stress Waves in Solids (Clarendon, Oxford, UK, 1953), pp.
106-129.

1S. Leeman, L. Hutchins, and J. P. Jones, ““Bounded pulse propagation,”’
in Acoustical Imaging, edited by P. Alais and A. F. Metherell (Plenum,
New York, 1982), Vol. 10, pp. 427-435.

13S. Finette, “‘Computational methods for simulating ultrasound scattering
in soft tissue,”” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 34, 283—
292 (1987).

3676 J. Acoust. Soc. Am., Vol. 106, No. 6, December 1999

6c. w. Manry and S. L. Broschat, “‘FDTD simulations for ultrasouhd
propagation in a 2-D breast model,”” Ultrason. Imaging 118, 25-34
(1996).

7y. W. Sparrow and R. Raspet, ‘A numerical method for general finite
amplitude wave propagation and its application to spark pulses,”” J.
Acoust. Soc. Am. 90, 2683-2691 (1991).

18R. W. MacCormack, Lecture Notes in Physics (Springer-Verlag, Berlin,
1971), Vol. 8, p. 151.

"D, Gottlieb and A. Turkel, “‘Dissipative two-four methods for time-

dependent problems,”” Math. Comput. 30, 703-723 (1976).

2E, Turkel, ““On the practical use of high-order methods for hyperbolic
systems,’” J. Comput. Phys. 35, 319-340 (1980).

211, M. Hinkelman, L. A. Metlay, C. J. Churukian, and R. C. Waag, ‘‘Modi-
fied Gomori trichrome stain for macroscopic tissue slices,”” J. Histotech.
19, 321-323 (1996). )

2H. Gray, Gray's Anatomy, edited by T. P. Pick and R. Howden
(Gramercy, New York, 1977), pp. 358-364 (facsimile of 1901 American
edition of Anatomy, Descriptive and Surgical).

R. Warwick and P. L. Williams, Gray’s Anatomy, 35th ed. (Saunders,
Philadelphia, 1973), pp. 488—490, 519-527. :

24 A. Elkeles, “‘Sex differences in the calcification of the costal cartilages,”’
J. Am. Geriat. Soc. 14, 456-461 (1966). .

5N. Bilaniuk and G. S. K. Wong, “‘Speed of sound in pure water as a
function of temperature,” J. Acoust. Soc. Am. 93, 1609-1612 (1993).

% Handbook of Chemistry and Physics, edited by R. C. Weast (CRC Press,
Boca Raton, 1985), p. F-10. )

773, A. Goss, R. L. Johnston, and F. Dunn, ‘‘Comprehensive compilation of
empirical ultrasonic properties of mammalian tissues,”” J. Acoust. Soc.
Am. 64, 423-457 (1978).

%S. A. Goss, R. L. Johnston, and F. Dunn, *‘Compilation of empirical
ultrasonic properties of mammalian tissues II,”” J. Acoust. Soc. Am. 68,
93-108 (1980).

2] E. Olerud, W. O’Brien, M. A. Riederer-Henderson, D. Steiger, F. K.
Forster, C. Daly, D. J. Ketterer, and G. F. Odland, ‘‘Ultrasonic assessment
of skin and wounds with the scanning laser acoustic microscope,”’ J. In-
vest. Dermatol. 8, 615-623 (1987).

% R. E. Neuman and M. A. Logan, *‘The determination of collagen and
elastin in tissues,’’ J. Biol. Chem. 186, 549-556 (1950).

SIE. A. Duck, Physical Properties of Tissue: A Comprehensive Reference
Book (Academic, New York, 1990).

32K. T. Dussik and D. J. Fritch, *“Determination of sound attenuation and
sound velocity in the structure constituting the joints, and of the ultrasonic
field distribution within the joints on living tissues and anatomical prepa-
rations, both in normal and pathological conditions,”” Progress Report to
Public Health Service, National Institutes of Health Project A454, 15 Sep-
tember 1956.

33H. Q. Woodard and D. R. White, ““The composition of body tissues’” Br.
J. Radiol. 59, 1209-1219 (1986). ’

3 International Commission on Radiation Units and Measurements, JCRU
Report 61: Tissue Substitutes, Phantoms, and Computational Modelling in
Medical Ultrasound (ICRU, Bethesda, MD, 1998), pp. 43-51.

K. H. Herzfeld and T. A. Litovitz, Absorption and Dispersion of Ultra-
sonic Waves (Academic, New York, 1959), pp. 353-361.

3 Simulations were performed on a Linux workstation with an AMD K6
processor running at 200 MHz and 128 MB of random-access memory.
The simulation code was written in Fortran 77 and compiled using the
front end fort77 and the Fortran-to-C converter f2¢ with the Gnu C com-
piler gcc. :

¥D.-L. Liu and R. C. Waag, ‘‘Correction of ultrasonic wavefront distortion
using backpropagation and a reference waveform method for time-shift
compensation,” J. Acoust. Soc. Am. 96, 649-660 (1994).

38L. M. Hinkelman, D.-L. Liu, L. A. Metlay, and R. C. Waag, ‘‘Measure-
ments of ultrasonic pulse arrival time and energy level variations produced
by propagation through abdominal wall,”’ J. Acoust. Soc. Am. 95, 530—
541 (1994). : .

397. Wolff, Das Gesetz der Transformation der Knochen (Hirschwald, Ber-
lin, 1982).

40, C. Rice, S. C. Cowin, and J. A. Bowman, ‘“On the dependence of the
elasticity and strength of cancellous bone on apparent density,”” J. Bio-
mech. 21, 155-168 (1988).

a7y, Rho, R. B. Ashman, and C. H. Turner, ““Young’s modulus of trabe-
cular and cortical bone material: ultrasonic and tensile measurements,”’ J.
Biomech. 26, 111-119 (1993). )

“C. H. Turner, J. Rho, Y. Takano, T. Y. Tsui, and G. M. Pharr, ““The

Mast et al.: Simulation of pulse propagation 3676




T —

-

elastic properties of trabecular and cortical bone tissues are similar: results
from two microscopic measurement techniques,” J. Biomech. 32, 437-
441 (1999).

438. Lees, J. M. Ahern, and M. Leonard, ‘‘Parameters influencing the sonic
velocity in compact calcified tissues of various species,”” J. Acoust. Soc.
Am. 74, 28-33 (1983).

48, Lees, ““Sonic properties of mineralized tissues,”” in Tissue Character-
ization with Ultrasound, edited by J. F. Greenleaf (CRC Press, Boca Ra-
ton, 1986), pp. 207-226.

451, A. Frizzell, E. L. Carstensen, and J. E. Dyro, ‘“‘Shear properties of
mammalian tissues at low MHz frequencies,”” J. Acoust. Soc. Am. 60,
1409-1411 (1976).

4E. L. Madsen, H. J. Sathoff, and J. A. Zagzebski, ‘‘Ultrasonic shear wave
properties of soft tissues and tissuelike materials,”” J. Acoust. Soc. Am.
74, 13461355 (1983).

3677 J. Acoust. Soc. Am., Vol. 106, No. 6, December 1999

4TL. Adler and K. V. Cook, ““Ultrasonic properties of freshly frozen dog
tibia,”” J. Acoust. Soc. Am. 58, 1107-1108 (1975).

488, S. Kohles, J. R. Bowers, A. C. Vailas, and R. Vanderby, ‘‘Ultrasonic
wave velocity measurement in small polymeric and cortical bone speci-
mens,”” J. Biomech. Eng. 119, 232-236 (1997).

“'K. Chandra and C. Thompson, ‘‘Ultrasonic characterization of fractal me-
dia,” Proc. IEEE 81, 1523-1533 (1993).

0L, M. Hinkelman and D.-L. Liu, ‘‘Measurement and analysis of ultrasonic
pulse wavefront distortion produced by chest wall,”” Proceedings of the
12th Annual University of Rochester Diagnostic Ultrasound Research
Laboratory Industrial Associates Meeting, 1995, pp. 8-25.

SIT. D. Mast, A. I. Nachman, and R. C. Waag, *‘Focusing and imaging
using eigenfunctions of the scattering operator,”’ J. Acoust. Soc. Am. 102,
715-725 (1997).

Mast et al.: Simulation of pulse propagation 3677 .




Appendix D

Validation of FFT-Based Algorithms for

Large-Scale Modeling of Wave Propagation in Tissue

Proceedings of the 2000 IEEE Ultrasonics Symposium

Vol. 2, pp. 1551-1556

Annual Report for DAMD17-98-1-8141, July 2000

Pages 47-52

46




Validation of FFT-Based Algorithms for Large-Scale Modeling
of Wave Propagation in Tissue

John C. Mould, Gregory L. Wojcik, Laura M. Carcione, Makoto Tabei*",
T. Douglas Mast", Robert C. Waag**,

Weidlinger Associates, 4410 El Camino Real, Suite 110, Los Altos, CA 94022,
*University of Rochester, "Department of Electrical & Computer Engineering,
*Departments of Electrical & Computer Engineering and Radiology, Rochester, NY 14642
*Applied Research Laboratory, The Pennsylvania State University, University Park, PA 16801

Abstract - We investigate accuracy of existing 2D
pseudospectral and k-space formulations for
simulating acoustic propagation in tissue or model
scattering media. They are intended to provide
insight into tissue-ultrasound interaction and a “test
bed” for aberration correction schemes in medical
imaging. Both methods employ FFT’s to evaluate
spatial derivatives to high accuracy on coarse grids.
The primary difference lies in the approach to time
integration.  Scattering in  large-scale, 2D,
inhomogeneous media is included. We compare
simulations against analytical solutions to illustrate
spatial and temporal discretization required for
acceptable solutions.

INTRODUCTION

The medium is represented by a uniform Cartesian
grid where pressure/stiffness and velocity/density
are unknowns/parameters at discrete points.
Spectral operators in space enable accuracy and
computational efficiency in very large models.
However, inhomogeneities are often represented as
piecewise constant from node to node, rather than
smooth.  The resulting stairstep can produce
spurious diffractions at edges/corners, inaccurate
reflections and transmissions at interfaces and local
Gibbs phenomena, by approximating derivatives at
a material discontinuity.  Thus, the efficiency
permitted by coarse spectral grids is compromised
by the need to resolve interface derivatives.

For example, scattering by a soft cylinder requires
only two nodes per wavelength inside and outside
the cylinder for accurate propagation, but
significantly more nodes per wavelength are
necessary to reduce interface artifacts. Interface
artifacts are quantified for a single interface, 1D
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multilayer models, and cylindrical scatterers.
Abdominal wall cross sections with coarse and fine-
scale inhomogenities are used to explore fidelity of
wave propagation versus nodes per wavelength and
tissue characteristic lengths. We show that the
existing tools are useable in 2D.

The pseudospectral method is implemented in the
SpectralFlex code. Kbench implements the k-space
method.

PSEUDOSPECTRAL AND K-SPACE METHODS

The pseudospectral and k-space methods were
formulated to provide efficient high-accuracy
solutions to long range wave propagation problems.
In fact, they debuted during the same year [1,2]. We
briefly describe the two methods as implemented in
[3,4], highlighting the major similarities and
differences.

Both use FFT’s to evaluate spatial derivatives to
high accuracy on coarse grids. The primary
difference lies in their respective approaches to time
integration. Note that coarse spatial grids provide
the primary incentive for FFT based (or any high
order) method. The computational burden is linear
in the number of timesteps per cycle, for both 2D
and 3D. Including the timestep, computational
burden is proportional to the number of Points Per
Wave (PPW) in 2D or (PPW)* in 3D.

SpectralFlex adopts a 4™ order staggered Adams
Bashforth ABS4 time integrator [5]. Among
general purpose integrators, this is close to optimal
for the current applications - 2-3 digits of accuracy
for a wave propagating several hundred wavelengths
on the coarsest possible grid. The stability limit for
ABS4 in 2D is CFL = 0.3. The CFL number is
defined as: CFL = At/(Ax/c), where At is the
timestep, ¢ is the wavespeed and Ax is the cell size.
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Accuracy frequently requires a smaller timestep,
say CFL = 0.1. Kbench implements a time
integrator in k-space based on the exact solution for
waves propagating in a homogeneous medium [4].
It outperforms the general purpose ABS4 time
integrator for weak scatterers in a homogeneous
linear acoustic medium. ABS4 becomes more
efficient when the scattering objects have a larger
impedance contrast.

LONG RANGE PROPAGATION

To illustrate the advantages of the FFT based
approach for long range propagation, we propagate
a 2.5 MHz pulse 200 wavelengths through water
using both SpectralFlex and PZFlex, a finite
element code that is second order accurate in both
space and time. The center frequency is 2.5 MHz,
but spectral content is observable up to 5 MHz.
Thus, 4 PPW at 2.5 MHz is the minimum sampling
capable of resolving the pulse.

Figure 1 compares exact, PZFlex and SpeciralFlex
solutions. SpectralFlex used 4 PPW at CFL = 0.1,
whereas PZFlex used 20 PPW at CFL = 0.8. These
discretizations in time and space are typical of those
that would be used in real problems.  The
SpectralFlex signal looks good and can be made
better by reducing the timestep. The PZFlex signal
is delayed in time and badly dispersed. A much
finer grid is required to achieve reasonable
accuracy. Note that at CFL = 1., PZFlex becomes a
characteristic method, and produces exact results,
even at 2 PPW. Unfortunately, this only works for
1D linear problems.

Kbench produces exact results for this example
because the time integrator is based on the exact
solution for a homogeneous medium.

DISCONTINUITIES

Spectral methods compute highly accurate spatial
derivatives of smooth fields. Thus, in homogeneous
regions, 2 cells per minimum wavelength (ie,
highest spatial frequency) suffice. ~ However, at
material interfaces both the pressure and velocity
fields should exhibit slope discontinuities as given
by (1), where n denotes the normal direction and the

P _pop
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superscript defines the + or — side of the interface.

The velocity field likewise exhibits slope
discontinuities at interfaces.
Spectral methods enforce smoothness,

approximating the jumps in normal derivatives with
steep gradients over a few cells. This
approximation is quite good at 10-20 cells per
wavelength, but less accurate at 2 cells per
wavelength. For a staggered grid, as in
SpectralFlex, the material interfaces coincide with
velocity nodes, so we average the density at these
interface points. On a regular grid, all the nodes lie
away from interfaces, so no averaging is necessary,
but the accuracy is even worse than for the
staggered grid.

1.00 Exact : : ;
0.80 {-m == SpeetrtalHex,—:t PPW; - ...... [ORREREE: ...................

0.60 1-w.iiiia 'i5'Z'l'=iéi(::,"26 W ]
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-1.00 '

Pressure
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time {usec]
Figure 1. Long range pulse propagation through
water.

1D versus exact solutions

Table 1 summarizes material properties used for the
1D benchmarks. Figure 2 illustrates the reflection/
transmission of a normally incident pulse at a
water/fat interface as modeled by SpectralFlex. To
plotting accuracy, the transmitted signals appear
exact (because it has much larger amplitude than the
reflected wave). However, the error in the reflected
signal is readily apparent at 4 PPW, and barely
visible at 6 PPW.

Figure 3 shows results for a water /bone interface.
In this case, errors are visible in both the reflected
and transmitted signals at 4 PPW. In both codes, the
most pathological case is varying density/constant
stiffness. Fortunately, most tissues have a higher
contrast in stiffness than density [6], so this worst
case is seldom encountered. As shown in Fig. 4
(density=1000, 928 kg/m®) errors in the reflected
wave are visible even at 12 PPW.
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Table 1 — Material Properties for 1-D benchmarks

Material | Density [kg/m3] Wavespeed [m/sec]
Water 1000. 1500.
Fat 928, 1427,
Conn 1100. 1537.
Musl 1041. 1571.
Livr 1050. 1577.
.08
06 - - ?é%ﬁs per wavelerigth
wl I e 6 cells per wavelength
® D oemame— 8 celis per wavelength
5 o2
w
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Figure 2. Reflected pulse at a water/fat interface.
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Figure 3. Reflected pulse at a water/bone interface.
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Figure 4. Reflected pulse from worst case interface.

The next benchmark examines propagation
through a 1-D approximation of an abdominal cross
section. Material parameters are again given in
Table 1. Slight errors in the transmitted wave are
apparent at 4 PPW (Fig. 5), but not at 8 PPW.
Reflected signals (not shown) are similar. Figure 6
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illustrates the effect of coarse non-conforming grids.
At 4.1 PPW, cell boundaries are misaligned with
actual material interfaces by up to ¥z cell. This is, of
course, the case for any real model with
discontinuous material properties. Properties are
assigned based on the center of the cell. The errors
introduced by this sampling dwarf all others. More
will be said about this in a later section.

0.40

: Exact :
: 4 cells per wavelength

8 cells per wavelength

0.30

o
]
=]

(=]
a
o

010441 4

Pressure [ x 10**-1 ]
: o
8

40 . 42 ’ 44

time [jisec]
Figure 5. Pulse transmitted through 1-D abdominal
wall model.
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o
Q
o
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[=]
o

.0.06 ) : : .
40 42 44
time [usec]
Figure 6. Pulse transmitted through 1-D

approximation of abdominal wall. Non-conforming
grid.

Scattering by cylinders

In addition to the numerical errors at interfaces,
approximations are introduced by the stair-step
representation of curved surfaces. To quantify these
approximations, we consider 3 mm radius fat and
bone cylinders immersed in water and insonified by
the usual 2.5 MHz pulse. We compute the difference
between exact and numerical signals for each
timestep at 128 locations at 6 mm radius, and equal
spacing in theta. We use the L? norm of this matrix
as an error metric. Figure 7a shows the L? error vs
PPW for kbench and SpectralFlex at CFL = 0.2.
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The curves are similar, though kbench is slightly
more accurate. For the larger contrast bone case in
Figure 7b, similar trends are evident, but in this case
SpectralFlex is more accurate. The error is tending
to zero as the PPW increases. The rate of
convergence is not quite quadratic. For context, Fig.
12 shows waveforms for L? error near 0.01.

Table 2 - Material Properties for Cylinders

Material | Wavespeed [m/sec] | Density [kg/m’]
Water 1524. 993.

Fat 1478. 950.

Bone 3540. 1990.

Figure 7c illustrates that at low CFL, the error due
to time integration tends to zero. For this problem,
kbench permits reasonable accuracy at roughly
double the SpectralFlex timestep. For the bone
cylinder, the stability limit of SpectralFlex is 0.15
(0.3 in the bone) , and kbench can go up to 0.2.

030 060

P - kbench

i == Kbenth : bench :
- &:edmlFlgx

- S‘peciraIF!sx

L2 Error [ x 10**-1]

o
]

005

0.00
400 500 6.00 7.00 8.00 400

Cells per wavelength
Fat Cylinder, CFL = 0.2

500 €00

7.00 8.00
Cells per wavelength
Bone Cylinder, CFL = 0.1

‘—iKbefich i}
- -;Spe.ctralFlexE

o1o 030 050 070 080 0.10 014 018
CFL CFL

Fat Cylinder, 6 cells per wave Bone Cylinder, 6 cells per wave
Figure 7. Cylinder benchmarks. Convergence with
increasing discretization.
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materials

Figure 8. Abdominal wall model.

Tissue examples
Figure 8 shows an abdominal wall cross section

[7,8]. This model is insonified by a 4.35 MHz plane
wave pulse. Figure 9 displays typical reflected and
transmitted signals computed by SpectralFlex at 4, 8
and 12 PPW. The grids were defined such that
material boundaries always lie in exactly the same
place. Again, it is confirmed that even the coarse 4
PPW model produces fairly accurate results.

0.80 - -
: 4 cells per wavelangth
0.60 ‘8 calls perwavelength
12 cells per wavelength
0.40 :
@ o020
a B N
0.00 JYELEE Y AN
8 ;
=
O o020
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060 e R 2R S NMISAIILEEE T
0.80 : : : :
20.00 22.00 24.00
time

Figure 9. Transmitted pulse from Abdominal wall
model.

INTERFACE TREATMENTS

Given that the largest numerical errors in the FFT
based methods stem from material interfaces, we
look at several interface treatments for reducing
those errors.

Jump conditions
One possible method for improving the accuracy at

interfaces is to split the solution into smooth and
non-smooth parts, and apply the spectral method
only to the smooth part. The idea is to introduce
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local corrections at material interfaces that enforce
the jump conditions exactly. E.g., construct low
order polynomials over the cells adjacent to the
interface that have zero value and zero slope 1 cell
away, and, when added to the continuous part
satisfy the jump condition (1) at the interface.
Obviously, the correction is not required to be local,
but if it covers more than 1 cell, the algorithm will
become much more complicated for multiple
interfaces. LaVeque [9] discusses such an approach
applied to finite difference models.

Figure 10 compares reflected and transmitted
signals for coarse models of an interface with and
without the jump correction for interface velocity.
This example isolates the effects of density changes
in that only the density is discontinuous. The bulk
modulus is continuous. The correction term
improves the computed result, but not to the level of
a homogeneous material. A similar correction could
be applied to the discontinuity in the velocity
gradients. However, it will have a weaker effect on
the staggered grid since the leading coefficients are
already continuous.

0.10 n :
= 20 elements :

5 elements - corrected

-0.10

5.00 5.40 ] 5.80
time

Figure 10. Jump treatment applied to interfaces.
Smoothing (Bandlimitation)

Another approach to improving accuracy at
discontinuities is to smooth or bandlimit the model
before sampling. This removes unresolvable high
spatial frequencies from the model itself. We found
that perfect bandlimitation reduced computed
signals too much, but a “halfband” filter improves
accuracy. The halfband filter is smooth with an
amplitude of 0.5 at half the sampling frequency.
Figure 11 shows direct and halfband filtered kbench
models of a 3 mm cylinder using the same number
of PPW. The corresponding pressure fields are
plotted using a 60 dB bipolar log scale.
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a) Unsmoothed b) Halfband Filtered
Figure 11. Direct sampled & bandlimited cylinders.
Models and pressure, 60 dB bipolar log scale.

The staircase representation of the cylinder
generates diffracted signals at each comer in 1la,
but these have disappeared in 11b.  Figure 12
shows selected waveforms from the direct and
halfband sampled models. The late time diffractions
have been removed, and overall L? error was
reduced from 0.0155 to 0.0105.  This exercise
demonstrates that smoothing can be useful.
However, there are some practical complications.
The current procedure computes the smoothed
object as the inverse transform of the object’s
analytical spectrum multiplied by the filter, and is
thus defined only for objects with a known
analytical spectrum. The extension to more general
models defined on a pixel by pixel level has not yet
been demonstrated. Also, continuous variations of
material properties produce a large number of
distinct materials. In the limit, each cell of the
model has different properties. For the purely
acoustic case, this presents little difficulty, but when
material nonlinearity or viscoacoustic damping is
added, the complexity intensifies. E.g., for each
wavespeed/damping set, an optimization problem
must be solved to compute the appropriate
relaxation constants, and these constants must be
stored.
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Figure 12. Backscattered signals from direct (top)
and bandlimited (bottom) models.

Note that this procedure adds information to the
model compared to the unsmoothed case. Because
smoothing is applied to the analytical cylinder, the
continuous variation of material constants provides
a richer set of parameters than is available in the
unsmoothed representation. As long as the model is
known to higher resolution than the grid,
information will be added. It is an interesting
question whether smoothing would be beneficial on
a grid finer than the pixel by pixel model definition.
For example, the UOR tissue cross sections [7,8] are
the most detailed models we know of. These are

“represented as piecewise constant with a pixel size
0.085 mm (about 7 PPW for a 2.5 MHz pulse). For
a 5 MHz pulse, the coarsest grid would have finer
resolution than the model.

Volume averaging of material constants has also
been shown effective [10]. This adds additional
information compared to the unsmoothed case, and
the correction is more local than smoothing.
However, the practical difficulties are the same.

As a last resort, increased discretization (brute
force) will always converge to an accurate solution.
This is a practical solution in 2D, as the above tissue
examples indicate.
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CONCLUSIONS

Model parameterization is a critical issue and puts
all the above results in practical perspective. As
shown above, differences in material constants or
interface locations cause much larger differences in
reflected/transmitted signals than any numerical
errors in the FFT based methods. For gaining
insight, or as a test-bed for aberration correction
schemes, a 4 PPW model is sufficient at frequencies
of 2.5 MHz or greater. Fine grids or cell-by-cell
representation of material properties are needed only
for more accurate rendition of model geometry.
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Abstract

Large-scale simulation of ultrasonic pulse propagation in inhomogeneous tissue is important
for study of ultrasound-tissue interaction as well as for development of new imaging methods.
Typical scales of interest span hundreds of wavelengths; most current two-dimensional methods,
such as finite-difference and finite-element methods, are unable to compute propagation on this
scale with the efficiency needed for imaging studies. Furthermore, for most available methods of
simulating ultrasonic propagation, large-scale three-dimensional computations of ultrasonic scat-
tering are infeasible. Some of these difficulties have been overcome by previous pseudospectral
and k-space methods, which allow substantial portions of the necessary computations to be ex-
ecuted using fast Fourier transforms. This paper presents a simplified derivation of the k-space
method for a medium of variable sound speed and density; the derivation clearly shows the rela-
tionship of this k-space method to both past k-space methods and pseudospectral methods. In the
present method, the spatial differential equations are solved by a simple Fourier transform method
and temporal iteration is performed using a k-t space propagator. The temporal iteration proce-
dure is shown to be exact for homogeneous media, unconditionally stable for “slow” (¢(x) < cp)
media, and highly accurate for general weakly scattering media. The applicability of the k-space
method to large-scale soft-tissue modeling is shown by simulating two-dimensional propagation
of an incident plane wave through several tissue-mimicking cylinders as well as a model chest wall
cross section. A three-dimensional implementation of the k-space method is also employed for the
example problem of propagation through a tissue-mimicking sphere. Numerical results indicate
that the k-space method is accurate for large-scale soft-tissue computations, with much greater
efficiency than that of an analogous leapfrog pseudospectral method or a 2-4 finite difference time-
domain method. However, numerical results also indicate that the k-space method is less accurate
than the finite-difference method for a high-contrast scatterer with bone-like properties, although
qualitative results can still be obtained by the k-space method with high efficiency. Possible exten-
sions to the method, including representation of absorption effects, absorbing boundary conditions,

elastic-wave propagation, and acoustic nonlinearity, are discussed.




I. Introduction

Computation of a scattered acoustic field, given an incident wavefield and complete specification
of an inhomogeneous medium, is known as the forward scattering problem. Numerical solution of
the forward scattering problem is central to many aspects of ultrasonic imaging, including inverse
scattering methods, numerical studies of wavefront distortion, and development of new methods
for adaptive focusing. Most methods for numerical solution of the forward scattering problem
fall into one of three categories: finite-difference methods, finite-element methods, and spectral
methods.

Finite-difference and finite-element methods are known as local because the wave propagation
equations of interest are solved at each point based only on conditions at nearby points. In contrast,
spectral methods such as the k-space method [1]-[7] and the pseudospectral approach [8]-{14]
are called global because information from the entire wavefield is employed to solve the wave
propagation equations at each point. In part because of their global nature, spectral methods can
be more accurate than local methods—for instance, pseudospectral methods applied to periodic
problems have been shown to be equivalent to finite-difference methods of infinite order [12].

Spectral methods also have considerable advantages for large-scale forward solvers because
the required storage and the number of operations per iteration can be dramatically reduced com-
pared to local methods. This advantage occurs principally because spectral methods can allow
computations to be performed on coarser grids while maintaining accuracy. For example, finite-
element methods and high-order finite-difference methods typically require grid spacings on the
order of ten points per minimum wavelength, while second-order finite-difference methods can
require twenty points per wavelength [10]. Spectral methods, in theory, require only two points
per wavelength (spatial Nyquist sampling), although for computations of propagation in inhomo-
geneous media, greater accuracy is achieved with grid spacings on the order of four points per
wavelength [10, 11, 14].

This report addresses the problem of large-scale ultrasonic wave propagation in biological me-
dia such as human tissue. For problems of interest in medical ultrasound, domain sizes can often
exceed the capabilities of conventional forward solvers. For example, one computation of realis-
tic scale would be the simulated propagation of a pulse with an upper bandwidth limit of 5 MHz
in a volume of dimensions 30 mm on each side and a nominal sound speed of 1.5 mm/us, so

that the minimum wavelength is 0.3 mm. For this computation, a second-order finite-difference




method (using twenty points per wavelength) would require a three-dimensional grid containing
8x 10° nodes, a finite-element or fourth-order finite-difference method (using ten points per wave-
length) would require 1 x 10° nodes, and a spectral method (using four points per wavelength)
would require 6.4 x 107 nodes. Since a grid of 6.4 x 107 single-precision complex numbers re-
quires storage of 512 megabytes, only spectral methods are feasible for realistic three-dimensional
computations on present-day computers that typically have a maximum random-access memory
storage of several gigabytes. The efficiency provided by fast Fourier transform implementations of
spectral algorithms is a further reason why spectral methods are a practical approach to large-scale
and three-dimensional computations of ultrasonic wave propagation.

Previous spectral approaches have included pseudospectral methods, in which spatial deriva-
tives are evaluated globally by Fourier transformation and wavefields are advanced in time using
various numerical integration techniques [8]-[14]. This method has provided high accuracy in
many cases; however, temporal iteration techniques that provide good accuracy for large-scale
models typically require small time steps, significant additional computations, or storage of wave-
fields from additional time steps [13], so that the efficiency advantages of the pseudospectral ap-
proach are less than might first be expected. The k-space family of methods [1]-{7] can overcome
this problem by providing explicit temporal propagators related to the Green’s function for wave
propagation in k-t (spatial frequency and time) space.

The present paper presents a simplified derivation of the k-space method using a differential
representation of the wave propagation equations. The spatial part of the wave propagation equa-
tions is solved by Fourier transformation in a manner analogous to past pseudospectral methods;
this derivation is shown to be theoretically equivalent to previous integral formulations of the k-
space method. Temporal iteration is performed using a k-t space propagator [2], which is shown
to be exact for homogeneous media, and in general to provide much greater accuracy and stability
than leapfrog iteration (in which temporal derivatives are evaluated using second-order-accurate
finite differences) without significant additional computation or storage requirements. Thus, the
k-space method provides spatial and temporal accuracy ideal for large-scale models of acoustic
propagation in weakly scattering media.

Below, a derivation of the k-space method is presented for propagation in fluid media with
spatially-dependent sound speed and density. For several canonical forward problems relevant
to ultrasonic imaging, the accuracy and efficiency of the k-space method is compared to a pseu-

dospectral method employing leapfrog iteration and to a 2-4 finite difference time-domain method.




The k-space and finite-difference methods are also used in an example computation for a large-
scale two-dimensional tissue model. Another example computation illustrates the efficiency of the
k-space method for three-dimensional scattering computations. Possible extensions of the present
k-space method, including multiple relaxation effects for absorption, absorbing boundary condi-

tions, inclusion of elastic and nonlinear acoustic effects, and parallelization, are discussed.




II. Theory

A. Derivation of the k-space method

The k-space method for solving the acoustic scattering problem is briefly derived below. The
derivation is simpler than those previously published, and also provides some new insight regarding
the remarkable accuracy and stability characteristics of the k-space method.

The method is applicable to large-scale modeling of linear ultrasonic propagation in soft tis-
sues, which are modeled here as fluid media with spatially-dependent sound speed and density. Al-
though the k-space method described below can be extended to include absorption effects, acoustic

nonlinearity, and shear-wave propagation, these effects are neglected in this derivation for simplic-

ity.
For a fluid medium with spatially-dependent sound speed and density, the linear acoustic wave
equation is [15]
1 1 p(x,t)
V- —Vpx,t)— =0, (D)
(p(x) Gt ) = Sy coor op

where p(x, t) is the acoustic perturbation in pressure, p(x) is the spatially-dependent density, and
¢(x) is the spatially-dependent sound speed.

By defining the normalized wavefield f(x,t) = p(x,t) / \/@ , as performed in a number of
previous studies (e.g., Refs. [16] and [17]), the first-order derivative term can be eliminated from
Eq. (1). Details of this step are given in Ref. [6]. When the wavefield is also split into incident and
scattered parts, such that f(x,t) = f;(x,t) + fs(x,1), a wave equation for the scattered field can
then be written L het) 1 Pl 1)

V2f,(x,t) — %—-éét;—’— =2 (q(x,t) + —575—27——) 2)

The terms on the right-hand side are effective sources associated with density and sound speed
(1) = /o) V* (1/y/6) £x,) ®

G
vl ) = (25 = 1) 7600 @

The incident wavefield f;(x,t) is required to satisfy the usual wave equation without any source

variations, defined as

and

terms (i.e., the D’Alembertian operator from the left-hand side of Eq. (2), applied to fi(x,t),
is equal to zero). Thus, the total wavefield f(x,t) also satisfies Eq. (2) identically, so that the
numerical algorithm developed below for the scattered field is equally applicable to the total field.
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With the additional definition of an auxiliary field w(x,t) = fs(x,t) + v(x,t), Eq. (2) can be
rewritten in k-space as the coupled set of equations

0*W(k,t)

5 = (@) V(K1) - Wk 1] - Qlk1), )
Vikt) = F[(l— C(Z‘%P) [f,-(x,t)—i—w(x,t)]], (©)

Qk,t) = ﬁFW;T(:T)W( p(l—x)){fi(x,t)+w(x,t)—v(x,t)]], (7)

where F denotes spatial Fourier transformation and capital letters indicate spatially Fourier trans-
formed quantities.

For each point in k-space, Eq. (5) represents an independent ordinary differential equation
equivalent to the standard simple-harmonic oscillator equation with the source terms (cok)?V and
—Q. This ordinary differential equation can be discretized in several ways. For instance, a second-
order accurate finite-difference representation of the second-order time derivative allows Eq. (5) to

be written as

Wk, b+ At) — 2W (k, 1) + W (k, ¢ — At) & (cokAt)?® |V (k,8) — W (k,2) — %%22 , (8)

where At is the time step. This is known as “leapfrog” iteration; use of Eq. (8) in the cur-
rent method is analogous to commonly used pseudospectral approaches [13, 14]. (Although in-
creased accuracy can be achieved by higher-order methods such as fourth-order Adams-Bashforth
or Adams-Moulton iteration, these methods have the disadvantage of requiring storage of the entire
computational grid for additional time steps [12, 13].)

A more accurate form of the temporal iterator is obtained using a nonstandard finite difference
approach. For the homogeneous simple harmonic oscillator equation, an exact discretization is
known [18]. (That is, for any temporal and spatial step sizes, the discrete difference equations yield
exactly the same solutions as the continuous differential equations. A similar exact discretization
for the linear part of the Korteweg-de Vries equation was presented in Ref. [19].) Use of this

nonstandard discretization leads to the following discrete form of Eq. (5):

kAt k
W (k,t+At)—2 W (k, 1)+ W (k,t-At) = 4 sin? <c-02—) [V(k, t) - W(k,t) - % ()]
Because the discretization employed is exact for the simple harmonic oscillator equation,
Eq. (9) is exactly equivalent to the differential equation (5) for the case of a homogeneous medium

lie, V(k,t) = Q(k,t) = 0]. Numerical results shown below indicate that high accuracy is also
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achieved for weakly scattering media, in which case V (k,t) < W (k, t) and Q(k,t) < W(k, ).
The present discretization method is equivalent to that employed by Bojarski (the form given in
Ref. [2] follows after some trigonometric manipulation); however, previous derivations of this
method have been based on approximations to an integral representation of Eq. (5) [2, 6]. It may
also be noted that Eqgs. (8) and (9) are equivalent in the limit of small At. However, results shown
below indicate that, for weakly scattering media, use of the k-t propagator (9) provides much
greater accuracy for larger time steps.

In numerical implementation of the k-space algorithm, Eq. (5) is used to advance the auxiliary
field W (k, t) in time. Equations (6) and (7) represent updates of the effective scattering sources
v and ¢ and their spatial Fourier transformation to yield the k-space effective sources V and Q.
Notable is that the effective source v is directly proportional to the square of the sound speed
variation of the medium, while the effective source ¢ is directly proportional to the Laplacian of
1 /\/;)(_x)_ . Thus, for a piecewise-constant inhomogeneous medium, v may be non-zero everywhere
while ¢ is nonzero (and singular) only on borders between regions.

The present k-space algorithm can now be summarized as follows:

1. Set any initial conditions for w(x, t) and spatially Fourier transform (by FFT) to obtain initial
conditions for W (k, t).

2. Define the incident wave fi(x, t) on the entire grid (fi(x, t) can be identically zero).
3. Compute v(x, t) and transform to obtain V' (k, t) [Eq. (6)].

4. Compute g(x, t) and transform to obtain Q(k, t) [Eq. (7)].

5. Evaluate W (k, t + At) [Eq. (9)] and inverse transform to obtain w(x, t + At).

6. Sett — t + At and go to step (2).

This method requires three fast Fourier transform operations per time step (one each for steps 3, 4,
and 5 of the algorithm enumerated above).

Also notable is that the algorithm is directly applicable to one-dimensional, two-dimensional,
and three-dimensional propagation. This is possible because the k-t space Green’s function has an

identical form for any number of spatial dimensions [2]. For example, to implement the present




methods for two-dimensional computations, the algorithm outlined above is simply employed us-
ing two-dimensional Fourier transforms. The three-dimensional version of the algorithm is for-
mally identical, but with three-dimensional Fourier transforms.

To distinguish between the standard leapfrog iteration method and the improved method used
here, the following nomenclature is used in the present paper. The above algorithm employing
Eq. (9) is referred to as a k-space method, while the corresponding algorithm employing Eq. 8)
for temporal iteration is referred to as a leapfrog pseudospectral method. This nomenclature is
used because the algorithm employing Eq. (9) is mathematically equivalent to an extended form of
Bojarski’s k-space method [2] cast in terms of differential equations rather than integral equations.
The algorithm employing Eq. (8) is referred to as pseudospectral because it is mathematically
equivalent to a conventional “method of lines” pseudospectral algorithm with leapfrog iteration
[12]. (A conventional pseudospectral algorithm of this form would employ the spatial inverse

Fourier transform of Eq. (8) for temporal iteration.)

B. Temporal and spatial sampling criteria

To determine the usable range of spatial and temporal sampling rates for the present k-space
method, limits on the stability and accuracy of the method can be evaluated analytically.

The stability of the k-space and leapfrog pseudospectral methods derived above can be evalu-
ated using standard, linear von Neumann stability analysis [20]. In this technique, the difference

equations that comprise Egs. (8) and (9) are applied to a test function
Wiess (k, nAt) = 9(k)" (k), 10)

where 1(k) is a spatial-frequency domain eigenmode and (k) is a temporal amplification factor.
If a difference equation admits solutions with |#(k)| > 1 for any vector wavenumber k, errors may
grow exponentially with time and the solution is thus unstable. If [9(k)| < 1 for all wavenum-
bers, then the solution is numerically stable. For simplicity, the present stability computation is
performed in the absence of density variations; the incident wave f; (x, 1) is assumed (without loss
of generality) to be zero. To obtain limiting stability criteria, the worst-case sound speed inhomo-
geneity ¢(x) = Cmax is also assumed.

Application of this technique to Eq. (8), which represents a leapfrog pseudospectral approach,
yields a quadratic equation for ¥(k). The resulting stability condition is

CmaxkmaxAt < 2, (1)
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where Cmax is the maximum sound speed in the region of computation, kyax =7 /Az is the max-
imum wavenumber in the discrete Fourier transforms used to compute W (k, t), and At and Az,
respectively, are the temporal and spatial steps employed. Using the standard definition for a
Courant-Friedrichs-Lewy (CFL) number [21], the stability condition

cFL= @&t 2 % (12)
Az T Crax

is obtained for the leapfrog pseudospectral method represented by Eq. (8).
Application of the same analysis to the k-space iterator of Eq. (9) yields the stability condition

CFL
il I (13)
2 Cmax

sin

This condition has the remarkable result that, for media with ¢(x) < ¢y everywhere, the linear
numerical stability of the k-space method is unconditional. However, for any medium, an upper
limit on the time step still arises from the requirement of sampling at the Nyquist rate: that is, the
time step should be sufficiently small to allow two samples per period for the highest-frequency

component of the computed field. Thus, the temporal sampling criterion can be written

1 T Az
At < = == 14
- 2fma.x CmaxKmax Cmax 14

or simply CFL < c¢p/cmax- The stability criterion (13) is met whenever the Nyquist sampling
criterion (14) is met; thus, the Nyquist sampling criterion is more restrictive.

For the spatial discretization, a Nyquist criterion based on the maximum spatial frequency
kmax = ™/Axz is met for any step size Az. However, the inhomogeneous medium will be inaccu-
rately represented (aliased) if its Fourier transform has significant spatial-frequency components
beyond kpay. Aliasing is a particular problem when the medium contains discontinuties (which
correspond to infinite spatial-frequency content); removal of errors associated with discontinuities

is discussed in the following section.

C. Effects of Discontinuities

The Fourier transforms performed in the present k-space algorithm can lead to numerical artifacts
(related to the Gibbs phenomenon) when the inhomogeneous medium contains discontinuities in
sound speed or density. To avoid such artifacts, the scattering object can be spatially filtered to

smooth any discontinuities. That is, the spatially-dependent sound speed c(x) and density p(x)




can be replaced by filtered functions of the form
uﬁltered(x) = F—l[U(k) ¢(k)]) (15)

in which the Fourier transform U(k) of the function u(x) is multiplied by a low-pass spatial-
frequency filter ¢(k). The function U(k) should be represented as accurately as possible; for
example, exact Fourier transforms of simply-shaped inhomogeneities can be used when available.
Below, the exact Fourier transform of a two-dimensional disk is employed for filtered representa-
tions of an infinite cylinder.

In the present study, the filter employed is the half-band filter [22]

1, k/kmax < 1/2,
¢r(k) = (16)
f(k/kmax—l/z)a 1/2Sk/kmaxs 3/21
where
HOES L + S cos(mwf) — 1 cos(376) an
T2 16 16

and k is the magnitude of the spatial-frequency vector k.

This filter defines a smoothly tapered window that causes no attenuation of spatial frequencies
below Kmax/2 and drops to half amplitude (—6 dB) at the spatial frequency kmax. Zero ampli-
tude is reached at the spatial frequency 3/2 kmax, which exceeds the spatial-frequency range of the
discrete Fourier transforms employed in the k-space algorithm, so that aliasing error is not elim-
inated by the half-band filter. However, a strict bandlimiting filter was found to cause excessive
loss of high-spatial-frequency components in the medium, so that scattering amplitude near the
backscatter direction was greatly reduced. The half-band filter of Eq. (16) was found to greatly
reduce Gibbs phenomenon artifacts while maintaining enough high-spatial-frequency components
of inhomogeneities to provide accurate backscatter results.

For inhomogeneous media, exact Fourier transforms are not generally available. However,
artifacts associated with discontinuities can still be removed by the methods given above. For
example, a finely sampled representation of the medium could be filtered using Eq. (15) and then

decimated to the desired spatial step size.
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III. Numerical Methods

Numerical implementation of the k-space algorithm was accomplished using the algorithm de-
scribed above. The normalized incident wave f;(x,t) was defined as a plane wave with Gaussian

temporal shape,
fi(x,t) = p(x)™2 sin(wer) e /7)), (18)

where T is the retarded time 7 = t — (z — g)/cp and zo is the initial central position of the
wavefield. This incident wave was implicitly specified using initial conditions (as for the incident
plane wave in Ref. [23]) rather than explicitly updated at each time step. Boundary conditions
were implicitly periodic at each edge of the computational domain, due to the inherent periodicity
of the fast Fourier transforms employed.

Wavefields were computed on two-dimensional grids large enough to avoid influence of
“wraparound” error within the temporal window of interest. All k-space computations were per-
formed on square grids of size N by N. Prior to execution of the main computation loop, the Lapla-
cian occurring in Eq. (7) was evaluated using second-order accurate, centered finite-difference
representations of the second derivative in each direction. Within the main computational loop,
all spatial derivatives were evaluated by Fourier transformation, implemented using a fast Fourier
transform (FFT) algorithm [24]. For maximum FFT efficiency, grid sizes N were chosen to be
integers with prime factors no higher than 3.

To reduce any spatial anistropy associated with the rectangular grid shape, the spatial-frequency

time-domain wavefield W (k, t + At) was windowed using the radially symmetric window
¢(k) = H(kmax - k) (19)

before inversion to yield w(x, t + At). (That is, within step 5 in the algorithm enumerated above.)
In Eq. (19), H is, as before, the Heaviside step function, kmax is the maximum wavenumber mag-
nitude (equal to 7/Az, since the spatial-frequency range sampled extends from —m/Az to 7/Az
in each direction), and k is the magnitude of the vector wavenumber k. In some cases, the medium
properties c(x) and p(x) were also smoothed by windowing in the spatial-frequency domain using
Eq. (16) with a wavenumber cutoff of kyax = 7 /A

For comparison, wavefields were also computed using a second-order in time, fourth-order in
space finite-difference method, described in Refs. [21], [23], and [25]-[27]. As for the k-space

computations, the incident wave was specified by a single initial condition rather than updated at
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each time step. Periodic boundary conditions were applied on all sides of the grid. Time steps were
determined using a CFL number of 0.25, which is a natural choice for this finite-difference method
[26]. As in Refs. [23] and [28], computations were performed at each time step only on portions
of the grid where the wavefields were nonzero; this reduces the required computation time for the
finite-difference method by about one half.

To test the k-space and finite-difference methods quantitatively, benchmark computations were
performed using an exact series solution for the scattering of a plane wave by a fluid cylinder
[29]. The sampling rate and waveform shape were chosen to match the time-domain simulation
data for the case of interest. The pressure field was then computed for each frequency component
with relative magnitude within 60 dB of the peak magnitude. Each single-frequency computation
truncated the series at the term having a relative contribution less than 10712 times the sum of all
terms. The frequency-domain scattered fields were then inverted by FFT to obtain numerically
exact solutions for the time-domain pressure fields at the simulated measurement points. An exact
time-domain solution for scattering from a fluid sphere was also obtained using an analogous
approach.

Benchmark studies of accuracy were performed using a cylinder with radius 2.0 mm and acous-
tic properties of human fat, and a background medium with acoustic properties of water at body
temperature. Rationale for use of these values is discussed in Ref. [23]. The cylinder had a sound
speed of 1.478 mm/us and a density of 0.950 g/cm?®, while the background medium had a sound
speed of 1.524 mm/us and a density of 0.993 g/lcm3. The scattering geometry was as shown in
Fig. 1. The incident pulse was a plane wave with Gaussian temporal characteristics, a temporal
Gaussian parameter ¢ = 0.25 ps, and a central starting position of £ = —4.5 mm at time zero.
For this pulse, a nominal maximum frequency is 4.43 MHz, corresponding to the spectral point
40 dB down from the center frequency (for the benchmark problem, this frequency corresponds
to a minimum wavelength of 0.33 mm). The k-space, leapfrog pseudospectral, finite-difference,
and exact methods described above were used to compute time histories of the total pressure field
at 128 equally-spaced “measurement” points spanning a circle of radius 2.5 mm concentric to
the cylinder. The pressure was interpolated using a two-dimensional lowpass interpolation filter

implemented by the formula [30]
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sin(r (z — 2:)/Az) L1 = [(z — z:)/(mAz)]*)"/?]

Piaterp(2,Y) = zz' :‘; n(z — z;)/Az Io[A]
sin(m(y — 4:)/Az) L[BA - [(y — v:)/(mAz)*) /] e
X rly—w)/As L[8) * Pl u)

z — mAz < z; < T+ mAz,

y —mAz < y; <y +mAxz,

where I, is the zeroth-order modified Bessel function of the first kind and £ is the Kaiser window
coefficient, taken here to be 7.0. This choice of 8 provides a filter with flat response up to about
0.6 kax and sidelobes at the —70 dB level.

The domain size for each k-space, pseudospectral, and finite-difference computation employ-
ing this cylinder was 18 x 18 mm?.

Further studies of accuracy were performed using a cylinder of radius 10 mm. Other parameters
were as described above for the small problem, except that the radius of the measurement circle was
12.5 mm and the starting position of the wavefront was z = —14.5 mm. The k-space method was
employed to compute two cases corresponding to unsmoothed and smoothed contrast functions,
using a spatial step of four points per minimum wavelength and a CFL number of 0.5. In each
k-space computation for this cylinder, the domain size employed was 72 x 72 mm?. The finite-
difference method was employed to compute a single case, using a spatial step of fourteen points
per minimum wavelength, a CFL number of 0.25, and a domain size of 72 mm X 60 mm.

To evaluate the relative accuracy and efficiency of the k-space and finite-difference methods
for a high-contrast scatterer, computations were also performed using a cylinder of radius 2.0 mm
with the sound speed and density of human bone. The values employed were a sound speed
of 3.54 mm/us and a density of 1.99 g/cm3, as in Ref. [28]. The incident pulse, receiver, and
computational domain characteristics were identical to those for the 2.0 mm “fat” cylinder case
described above.

In all of the above accuracy tests, a quantitative measure of the accuracy was obtained us-
ing the time-domain L? error of each numerically computed pressure field Poum (X, t) versus the
corresponding exact series solution Pexact (X, t). This quantity has the definition

— “pnum (x,, t) = Pexact (xr, t) " (20)
“pexact (X,., t) " ,
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where |p(x;, t)| is the L? norm [31] of a matrix composed of the time-domain signal p(x, ¢) for all
receiver points x, and all time samples computed. Eq. (20) represents an accuracy criterion that
is much stricter than more general criteria, such as comparison of the rms waveform amplitude or
the amplitude and phase at the center frequency. To achieve a low L? error by the definition of
Eq. (20), both the waveform amplitude and phase must be accurately computed for all significant
frequency components of the field.

The use of the present k-space method in a more realistic two-dimensional simulation of ul-
trasonic propagation was also tested. For this purpose, a cross-sectional tissue map of the human
chest wall [28] was used as the simulated medium. A pulse center frequency of 3.0 MHz was
employed together with a temporal Gaussian parameter of 0.3127 s; these parameters correspond
to the highest center frequency employed in the simulation study reported in Ref. [28]. The corre-
sponding nominal minimum wavelength is 0.34 mm. The k-space computation employed 4 points
per minimum wavelength, a CFL number of 0.5, and a grid size of 54.9 x 54.9 mm?. The finite-
difference computation employed 14 points per minimum wavelength, a CFL number of 0.25, and
a grid size of 38.5x29.7 mm?. As in Refs. [23] and [28], periodic boundary conditions were ap-
plied on the sides perpendicular to the wavefront, while first-order radiation boundary conditions
[23] were applied on the sides parallel to the wavefront.

Finally, to illustrate the efficiency and accuracy of the present k-space method for three-
dimensional computations, scattering from a penetrable sphere with acoustic properties of hu-
man muscle (speed 1.547 mm/us, density 1.090 g/cm® [23]) was computed. The sphere radius
was 1.5 mm; time-domain pressure waveforms were recorded at 128 equally-spaced measurement
points on the sphere surface (in the ¢ = 0 plane). The computation employed an incident pulse
identical to that for the cylinder simulations described above, a spatial step of four points per min-
imum wavelength, and a CFL number of 0.5. The total pressure wavefield was computed for a
time duration of 7.3 us on a three-dimensional grid of dimensions 10.66 x 10.66 x 10.66 mm3,
The accuracy of this computation was assessed by evaluating the L? error between the k-space and

exact solutions using Eq. (20).
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IV. Numerical Results

An example k-space computation, performed using the 2.0 mm cylinder with acoustic properties of
human fat, is illustrated in Fig. 1. The cylinder is also sketched in each panel. For the computation
shown, smoothed sound speed and density functions were obtained by filtering the analytic spatial
Fourier transform of the cylinder using Eq. (16). The time history of the total wavefield is shown
as computed by the k-space method for a spatial step size of four points per minimum wavelength
and a CFL number of 0.5. Details visible include a scattered wave from the edge nearest the initial
wavefront (c), weak focusing near the trailing edge of the cylinder (e), scattering from the trailing
edge [(H)—(1)], and low-level multiple scattering [(g)—-(h)].

Results of accuracy benchmarks for the k-space and leapfrog pseudospectral methods described
above are shown in Fig. 2. Each of these computations was made using the 2.0 mm radius cylinder
described above and a spatial step size of four points per maximum wavelength. The results show
that the k-space method employing the k-t space propagator of Eq. (9) provides much higher
accuracy than the pseudospectral method employing the leapfrog propagator of Eq. (8). The two
methods provide equivalent results for very small time steps (CFL numbers less than about 0.1), but
the k-space method maintains its highest accuracy up to a CFL number of about 0.4. In contrast,
the pseudospectral method rapidly increases in error for CFL numbers above 0.1.

Error results for the pseudospectral computations shown in Fig. 2 are not given for CFL num-
bers above 0.6 because the computation was unstable for higher CFL numbers. (That is, computed
fields incurred spurious exponential growth, resulting in numerical overflow.) This observation of
instability is consistent with the linear stability limit of 0.6366 given by Eq. (12) for this case. The
k-space method did not incur any numerical instability for the range of CFL numbers investigated,
so that the method is seen to be unconditionally stable as predicted for ¢(x) < ¢. However, the
error of this method grows as the CFL number approaches and exceeds unity, consistent with the
Nyquist sampling criterion given by Eq. (14).

Pseudospectral methods employing higher-order time integration achieve higher accuracy than
the leapfrog iteration used as a comparison here. However, tests of the present k-space method and
a pseudospectral method employing fourth-order Adams-Bashforth time integration have shown
trends similar to that seen in Fig. 2 [32]. Specifically, for weakly-scattering media, the k-space
method yields similar accuracy for time steps two to three times larger than those required by the

higher-order pseudospectral method described in Ref. [13].
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The relative accuracy of the k-space method and the 2-4 finite difference method are compared
in Fig. 3 as a function of the spatial step size. For these computations, the CFL number of the
k-space computations was held constant at 0.5, consistent with the CFL-accuracy relationship
shown in Fig. 2, while the CFL number of the finite-difference computations was held at 0.25
[26]. Both methods achieve high accuracy for finer grid spacings; however, the k-space method
achieves higher accuracy for much larger spatial step sizes. The L? error drops below 0.05 for
k-space computations employing only three points per minimum wavelength, while achievement
of the same accuracy criterion requires 14 points per minimum wavelength for the finite-difference
computations. This difference suggests that storage requirements for k-space computations can be
much smaller than those for finite-difference computations of comparable accuracy: on the order
of 12 times smaller for two-dimensional computations and 43 times smaller for three-dimensional
computations.

Visual comparison of simulated waveforms for the 2.0 mm radius cylinder is shown in Fig. 4.
Waveforms in this figure are those computed using the k-space (four points per minimum wave-
length, CFL number 0.5, with both unsmoothed and smoothed contrast functions), finite-difference
time-domain (14 points per minimum wavelength, CFL number 0.25), and exact methods. The k-
space solution for the unsmoothed cylinder shows a small time-domain L? error (0.0243), but also
exhibits spurious waves (nearly 60 dB down from the peak pressure amplitude) between the two
main arrivals. These spurious waves are removed by use of the k-space method with smoothed
medium parameters [i.e., p(x) and ¢(x) smoothed using Eq. (16) with kmax =7 /Axz]; the L? error
is decreased to 0.0214 by this smoothing. The finite-difference result bears a strong qualitative
resemblance to the exact solution, but the larger L? error (0.0454) indicates that phase errors have
been introduced by the dispersion inherent to the finite-difference method. Computation times [33]
were 2.31 minutes for the k-space method and 1.55 hours for the finite-difference method, so that
the k-space method yields greater accuracy at much less computational cost.

Waveforms for the 10 mm radius cylinder are shown in Fig. 5 in a format analogous to that of
Fig. 4. These results indicate that, as for the smaller cylinder, smoothing of the contrast functions
produces a reduction in spurious low-amplitude waves. For this problem, unlike the 2.0 mm radius
cylinder discussed above, this smoothing slightly decreases the overall accuracy. (The time-domain
L2 error is 0.1292 for the smoothed case versus 0.1288 for the unsmoothed case.) The finite-
difference solution, using 14 points per wavelength and a CFL number of 0.25, requires much

greater storage and computational time, and produces waveforms with poorer accuracy (an L?
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error of 0.1794) than the k-space method.

Results for the 2 mm “bone” cylinder are shown in Fig. 6. In this case, the k-space method
using a CFL number of 0.5 exhibited numerical instability. This instability is expected, since
this CFL number exceeds the limit of 0.2833 set by Eq. (13). To obtain an appropriate temporal
sampling rate, the time step was reduced in proportion to the increase in cmax, resulting in a CFL
number of 0.2153. Required computation time for the k-space method was 5.34 minutes [33]; the
time-domain L? error was 0.3061 for the unsmoothed case and 0.2687 for the smoothed case.

The finite-difference method, employing 14 points per wavelength and a CFL number of 0.1076
(also changed in proportion to Cmay), achieved an L? error of 0.0350 in a computation time of
3.99 hours [33]. This result indicates that finite-difference methods can be much more accurate
than k-space methods for scattering problems involving very high-contrast inhomogeneities such
as bone within soft tissue. However, the k-space solution, as seen in Fig. 6, still shows good
qualitative agreement with the exact solution.

The relative inaccuracy of the k-space method for high-contrast scatterers may be associated
with aliasing effects, as suggested in Ref. [5]. That is, large jumps in spatial contrast functions are
associated with significant high-frequency components of the corresponding k-space spectra. If the
spatial-frequency range employed in the k-space algorithm is not sufficiently large, aliasing errors
result. Low-pass filtering of the contrast functions would remove this aliasing, but also introduces
additional errors because high spatial-frequency components of the scattering medium are lost.
The half-band filtering employed here is a compromise that greatly reduces aliasing errors while
maintaining some contributions from high spatial frequencies (up to the spatial Nyquist rate).

Computational results for a large-scale two-dimensional tissue model are shown in Fig. 7.
Waveforms computed by the k-space (four points per minimum wavelength, CFL number 0.5, no
smoothing) and the finite-difference (ten points per minimum wavelength, CFL number 0.25) were
recorded at 130-element apertures composed of simulated point receivers separated by a pitch of
0.21 mm. The results produced by the finite-difference method and the k-space method are visually
indistinguishable. However, despite the reduced grid size and limited computations employed for
the finite-difference method, the k-space method was more efficient by about a factor of four; the
required CPU time for the k-space method was 0.90 CPU hours, while the corresponding time for
the finite-difference time-domain method was 4.58 CPU hours [33]. This discrepancy in efficiency
is even more impressive when note is made that the k-space method using 4 points per minimum

wavelength provides significantly higher accuracy than the finite-difference method using 14 points
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per minimum wavelength (as illustrated in Fig. 3). Thus, the present k-space method is suggested
to be an appropriate replacement for finite-difference methods previously employed to compute
propagation through large-scale soft-tissue models [23]-[28].

Results of the example three-dimensional computation are shown in Fig. 8. Three-dimensional
isosurface renderings of the total pressure wavefield are shown at three instants separated by
0.79 ps. For the three-dimensional computation, the total computation time required was
1.51 hours [33]. The L? error of the computed waveforms, relative to the exact time-domain

solution for scattering from a sphere [29], was 0.0186.

18




eSS

V. Extensions to the k-Space Method

The present method can be extended in a number of ways to increase its range of applicability in
computations of ultrasound-tissue interactions.

Absorption effects could be added to the present algorithm in several ways. The most straight-
forward method for including absorption is to include an ad hoc damping term proportional to
df,/0t in Eq. (2) [3]-5]. This approach yields absorption coefficients roughly independent of
the frequency. Similarly, inclusion of a damping term proportional to 0% f,/0t® (a thermovis-
cous approximation) would lead to absorption roughly proportional to the frequency squared [34].
However, neither of these approaches has a rigorous justification for use in models of ultrasound
propagation in biological tissue.

A physically justifiable approach for inclusion of absorption in the present algorithm is to
consider absorption associated with multiple relaxation processes. The theoretical basis for this
approach is presented in Ref. [35]; one implementation of this method in a finite-difference time-
domain algorithm is given in Ref. [36]. Since multiple relaxation processes can lead to a variety of
frequency-dependent absorption characteristics, this approach provides a possibility of modeling
realistic frequency-dependent attenuation in tissue without introduction of nonphysical dispersion
or violation of causality. Following the methods presented in Ref. [36], absorption due to multiple
relaxation processes can be implemented in a computationally efficient form. Possible alternatives
include the time-causal power law absorption formulation of Ref. [37].

Another possible extension to the present method is to incorporate the full elastic wave propa-
gation equations. This extension would account for shear wave propagation, which may substan-
tially affect results for propagation models including bone and other calcified tissue. By applying
methods similar to those outlined in Ref. [7] to the algorithm described above, a full elastic k-space
method incorporating Fourier-space evaluation of spatial derivatives and a k-t space propagator
could be derived. Such a method would, as in Ref. [7], include separate k-¢ space propagators for
compressional and shear waves.

Boundary conditions of k-space and pseudospectral methods are inherently periodic, so that

simple radiation boundary conditions cannot be straightforwardly implemented. One option for ab-
sorbing boundary conditions is to include tapered (artificial) absorption functions at each boundary
[38]. The technique of perfectly matched layers (PML) [39] can provide true radiation boundary

conditions; however, present PML implementations are not applicable to the second-order wave
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equation employed here. Combination of a k-space method with PML boundary conditions may
require derivation of a new k-t space time integrator for the first-order wave propagation equations.

The present derivation was based on the linear (small-amplitude) acoustic propagation equa-
tions. The k-space method could be easily extended to incorporate finite-amplitude acoustic ef-
fects. For example, the nonlinear terms of the Westervelt propagation equation (used in Ref. [34]
for modeling of ultrasonic propagation in tissue) could be included as effective source terms addi-
tional to the effective sources v and q defined above. The numerical results obtained above suggest
that the k-space method is most accurate when the effective source terms are fairly small; thus, a
nonlinear extension to the k-space method should be highly accurate for weakly nonlinear effects.

Computation times for the k-space method can easily be reduced by parallelization. The pri-
mary computational burden of the method is incurred in the multidimensional fast Fourier trans-
forms (FFT) taken at each time step. Since FFT’s can be efficiently executed on parallel processors
[24, 40], the present k-space method should scale efficiently to large problems that require parallel

processing.
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VI. Conclusions

A simplified derivation of the k-space method for computation of ultrasonic wave propagation
has been presented. The method efficiently accounts for sound speed and density variations, and
can be extended to include realistic absorption effects and absorbing boundary conditions. Three-
dimensional computations can also be performed without change to the algorithm as derived here.
Analytic and numerical results have shown that the present k-space method provides superior
stability and accuracy over both a similar leapfrog pseudospectral method and a fourth-order space,
second-order time, finite-difference method. This improved accuracy allows larger spatial and
time steps to be employed, so that large-scale multidimensional computations are more feasible.
Computations using a realistic two-dimensional tissue model support the conclusion that the k-
space method provides high accuracy and low computational cost for large-scale computations.
The results also indicate that care should be taken when choosing and implementing a forward
solver for a particular scattering problem. For instance, in the present k-space method, one can
suppress spurious waves by smoothing sound speed and density variations; however, this smooth-
ing does not decrease the time-domain L? error in some cases. Likewise, the finite-difference
time-domain method employed here is less accurate than the k-space method in most cases ex-
amined here, but achieved higher accuracy for a test case with a bone-like scatterer. In general,
the k-space method proposed here should be most applicable to large-scale scattering problems

involving low-contrast inhomogeneities such as soft tissue structures.

Acknowledgments

The authors thank Fadil Santosa and Bengt Fornberg for helpful discussions. This research was
funded by NIH Grants DK 45533, HL 50855, CA 74050, and 1R29CA81688, US Army Grant
DAMD-17-98-1-8141, DARPA Grant N00014-96-0749, and the University of Rochester Diagnos-
tic Ultrasound Research Laboratory Industrial Associates.

21




References

[1] N. N. Bojarski, “The k-space formulation of the scattering problem in the time domain,” J.
Acoust. Soc. Am., vol. 72, pp. 570-584, 1982.

[2] N. N. Bojarski, “The k-space formulation of the scattering problem in the time domain: an

improved single propagator formulation,” J. Acoust. Soc. Am., vol. 77, pp. 826-831, 1985.

[3] B. Compani-Tabrizi, “K-space formulation of the absorptive full fluid elastic scalar wave

equation in the time domain,” J. Acoust. Soc. Am., vol. 79, pp. 901-905, 1986.

[4] S. Finette, “A computer model of acoustic wave scattering in soft tissue,” IEEE Trans.
Biomed. Eng., vol 34, pp. 336-344, 1987.

[5] S. Finette, “Computational methods for simulating ultrasound scattering in soft tissue,” IEEE

Trans. Ultrason., Ferroelect., Freq. Contr., vol. 34, pp. 283-292, 1987.

[6] S. Pourjavid and O. J. Tretiak, “Numerical solution of the direct scattering problem through
the transformed acoustical wave equation,” J. Acoust. Soc. Am.,, vol. 91, pp. 639-645, 1992.

[7]1 Q. H. Liu, “Generalization of the k-space formulation to elastodynamic scattering problems,”
J. Acoust. Soc. Am.,, vol. 97, pp. 1373-1379, 1995.

[8] H.-O. Kreiss and J. Oliger, “Comparison of accurate methods for the integration of hyperbolic
equations,” Tellus, vol. 24, pp. 199-215, 1972.

[9] B. Fornberg, “On a Fourier method for the integration of hyperbolic equations,” SIAM J.
Numer. Anal., vol. 12, pp. 509-528, 1975.

[10] D. Gottlieb and S. A. Orszag, Numerical Analysis of Spectral Methods, Philadelphia: SIAM,
1977.

[11] D. C. Witte and P. G. Richards, “The pseudospectral method for simulating wave propaga-
tion,” in Computational Acoustics, D. Lee, A. Cakmak, and R. Vichnevetsky, Eds., vol. 3,
pp 1-18, New York: North-Holland, 1990.

[12] B. Fornberg, A Practical Guide to Pseudospectral Methods, Ch. 3, Cambridge: Cambridge
University Press, 1996.

22




[13] G. Wojcik, B. Fornberg, R. Waag, L. Carcione, J. Mould, L. Nikodym, and T. Driscoll,
“Pseudospectral methods for large-scale bioacoustic models,” Proc. IEEE Ultrason. Symp.,
1997, vol. 2, pp. 1501-1506.

[14] Q. H. Liu, “The pseudospectral time-domain (PSTD) algorithm for acoustic waves in ab-
sorptive media,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 45, pp. 1044-1055,
1998.

[15] A.D. Pierce, Acoustics: an Introduction to its Physical Principles and Applications, Second

Edition, Ch. 1, Woodbury, New York: Acoustical Society of America, 1989.

[16] S. A. Johnson and M. L. Tracy, “Inverse scattering solutions by a sinc basis moment

method—Part I: theory,” Ultrason. Imag., vol. 5, pp. 361-375, 1983.

[17] A. Nachman, “Reconstructions from boundary measurements,” Ann. Math., vol. 128,
pp. 531-576, 1988.

[18] R. E. Mickens, Nonstandard Finite Difference Models of Differential Equations, Singapore:
World Scientific, 1994.

[19] B.Fomberg and G. B. Whitham, “A numerical and theoretical study of certain nonlinear wave
phenomena,” Phil. Trans. Royal Soc. London, vol. 289, pp. 373-404, 1978.

[20] E. H. Twizell, Computational Methods for Partial Differential Equations, New York: Ellis
Horwood Limited, 1984.

[21] E. Turkel, “On the practical use of high-order methods for hyperbolic systems,” J. Comp.
Phys., vol. 35, pp. 319-340, 1980.

[22] R. E. Crochiere and L. R. Rabiner, Multirate Digital Signal Processing, Englewood Cliffs,
NIJ: Prentice-Hall, 1983.

[23] T. D. Mast, L. M. Hinkelman, M. J. Orr, V. W. Sparrow, and R. C. Waag, “Simulation of
ultrasonic pulse propagation through the abdominal wall,” J. Acoust. Soc. Am., vol. 102,
pp. 1177-1190, 1998. [Erratum: J. Acoust. Soc. Am., vol. 104, pp. 1124-1125, 1998.]

[24] M. Frigo and S. G. Johnson, “FFTW: An adaptive software architecture for the FFT,” Pro-
ceedings of the ICASSP, vol. 3, pp. 1381-1384, 1998.

23




[25] R. W. MacCormack, “Numerical solution of the interaction of a shock wave with a laminar
boundary layer,” in Lecture Notes in Physics, J. Ehlers, K. Hepp, and H. A. Weidenmiiller,
Eds., vol. 8, pp. 151-163, Berlin: Springer-Verlag, 1971.

[26] D. Gottlieb and A. Turkel, “Dissipative two-four methods for time-dependent problems,”
Math. Comp., vol. 30, pp. 703-723, 1976.

[27] V. W. Sparrow and R. Raspet, “A numerical method for general finite amplitude wave prop-
agation and its application to spark pulses,” J. Acoust. Soc. Am., vol. 90, pp. 2683-2691,
1991.

[28] T. D. Mast, L. M. Hinkelman, M. J. Orr, and R. C. Waag, “Simulation of ultrasonic pulse
propagation, distortion, and attenuation in the human chest wall,” J. Acoust. Soc. Am.,
vol. 106, pp. 3665-3677, 1999.

[29] P. M. Morse and K. U. Ingard, Theoretical Acoustics, Ch. 8, New York: McGraw-Hill, 1968.

[30] A. V. Oppenheim and R. W. Schafer, Discrete-Time Signal Processing, Ch. 7, Englewood
Cliffs, New Jersey: Prentice Hall, 1989.

[31] R. L. Burden, J. D. Faires, and A. C. Reynolds, Numerical Analysis, Ch. 8, Boston: Prindle,
Weber, and Schmidt, 1978.

[32] J.C.Mould, G. L. Wojcik, L. M. Carcione, M. Tabei, T. D. Mast, and R. C. Waag, “Validation
of FFT-based algorithms for large-scale modeling of wave propagation in tissue,” Proc. IEEE

Ultrason. Symp., 1999.

[33] All CPU timings reported in this paper were obtained using a Linux workstation with a
200 MHz AMD K6 processor and 128 MB RAM.

[34] 1. M. Hallaj and R. O. Cleveland, “FDTD simulation of finite-amplitude pressure and tem-
perature fields for biomedical ultrasound,” J. Acoust. Soc. Am., vol. 105, pp. L7-L12, 1999.

[35] A.L Nachman, J. Smith, and R. C. Waag, “An equation for acoustic propagation in inhomo-
geneous media with relaxation losses,” J. Acoust. Soc. Am., vol. 88, pp. 1584-1595, 1990.

[36] X. Yuan, D. Borup, J. Wiskin, M. Berggren, and S. Johnson, “Simulation of acoustic wave

propagation in dispersive media with relaxation losses by using FDTD method with PML

24




eSS

absorbing boundary condition,” IEEE Trans. Ultrason., Ferroelect., Freq. Contr., vol. 46,
pp. 14-23, 1999.

[37] T.L. Szabo, “Time domain wave equations for lossy media obeying a frequency power law,”

J. Acoust. Soc. Am., vol. 96, pp. 491-500, 1994.

[38] C. Cerjan, D. Kosloff, R. Kosloff, and M. Reshef, “A nonreflecting boundary condition for
discrete acoustic and elastic wave equations,” Geophysics, vol. 50, pp. 705-708 (1985).

[39] J.-P. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J.
Comput. Phys., vol. 114, pp. 185-200, 1994.

[40] P. N. Swarztrauber, “Multiprocessor FFTs,” Parallel Computing, vol. 5, pp. 197-210, 1987.

25




Figure 1: Time history of total acoustic pressure computed by the k-space method for a cylinder
of 2.0 mm radius and fat-mimicking acoustic properties. The cylinder is sketched as a light gray
region. The first panel shows the wavefield impinging on the cylinder at time ¢ = 0.98 us and
subsequent panels (progressing from left to right and top to bottom) show the total wavefield at
intervals of 0.98 us. The acoustic pressure is plotted in all panels using a bipolar logarithmic scale
with a 60 dB dynamic range.
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Figure 2: Time-domain comparison of accuracy for the k-space and leapfrog pseudospectral meth-
ods as a function of CFL number. Each test used the “fat” cylinder of 2.0 mm radius and a spatial
step size of four points per minimum wavelength.
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Figure 3: Time-domain comparison of accuracy for the k-space and 2-4 finite-difference time-
domain methods as a function of the spatial step size in points per minimum wavelength (PPW).
Each test used the “fat” cylinder of 2.0 mm radius. CFL numbers were 0.5 for the k-space method
and 0.25 for the finite-difference time-domain method.
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Figure 4: Computed waveforms for the “fat” cylinder at a radius of 2.5 mm for a cylinder of radius
2.0 mm and a pulse center frequency of 2.5 MHz. The acoustic pressure is shown on a bipolar
logarithmic scale with 60 dB dynamic range. The horizontal range of each plot is 360 degrees,
covering the entire measurement circle starting with angle 0 (forward propagation). The vertical
range of each panel corresponds to a temporal duration of 9 us, with £ = 0 at the top of each
plot. (a) Unsmoothed object; k-space solution with four points per minimum wavelength, L? error
0.0243. (b) Smoothed object; k-space solution with four points per minimum wavelength, L? error
0.0214. (c) Finite-difference solution with 14 points per minimum wavelength, L? error 0.0454.
(d) Exact solution.
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Figure 5: Computed waveforms at a radius of 12.5 mm for a “fat” cylinder of radius 10.0 mm

and a pulse center frequency of 2.5 MHz. The acoustic pressure is shown in each panel using a

bipolar logarithmic scale with a 60 dB dynamic range. The horizontal range of each panel is 360

degrees and the vertical range is 33 us. (a) Unsmoothed object; k-space solution, L? error 0.1288.

(b) Smoothed object; k-space solution, L? error 0.1292. (c) Finite-difference solution, L? error
0.1794. (d) Exact solution.
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Figure 6: Computed pressure waveforms at a receiver radius of 2.5 mm for a “bone” cylinder of
radius 2.0 mm and a pulse center frequency of 2.5 MHz. The format is the same as in Fig. 4. (a)
Unsmoothed object; k-space solution, L2 error 0.3061. (b) Smoothed object; k-space solution, L?
error 0.2687. (c) Finite-difference solution, L? error 0.0380. (d) Exact solution.

31




R

.

Figure 7: Comparison of k-space and finite-difference methods for a tissue cross-sectional model.
(a) Chest wall cross section (taken from Ref. [24]), with black indicating connective tissue, dark
gray indicating muscle, and light gray indicating fat. The region is 33.5 mm wide and 17.2 mm
high. (b) Transmitted waveforms computed by the k-space method using four points per minimum
wavelength and a CFL number of 0.5, shown on a bipolar linear gray scale with white indicating
maximum positive pressure and black indicating maximum negative pressure. The horizontal range
shown is 27.3 mm and is shown to the same scale as in (a). The vertical range is 3.29 us. (c)
Transmitted waveforms computed by the finite-difference time-domain method using 10 points
per minimum wavelength and a CFL number of 0.25, shown using the same format as in (b).
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Figure 8: Isosurface renderings of the total (logarithmically scaled) pressure wavefield associated
with scattering from a “muscle” sphere of radius 1.5 mm. Incident pulse parameters were the
same as in Figs. 4-6. Panels (a)—(d) show the wavefield at four instants separated by 0.79 us. The
view shown is such that the incident wave is traveling into the page, so that the visible wavefield
includes the backscattered component. The lowest-amplitude isosurface shown is 67.5 dB down
from the incident-wave amplitude. Each panel shows a rendering of the entire computational
domain (10.66 mm on each side). In panel (a); the incident wavefront is just impinging on the
sphere; in panel (d), the scattered wavefront has just passed the computational boundary.
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Abstracts

1. “A new k-space method for simulation of ultrasonic propaga-
tion in tissue,” presented at the 138th Meeting of the Acoustical
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2. “Time-domain inverse scattering for quantitative ultrasonic
mammography” (Technical Abstract), presented at the DoD Era
of Hope Meeting (p. 89).

3. “Time-domain inverse scattering for quantitative ultrasonic
mammography” (Lay/Public Abstract), presented at the DoD
Era of Hope Meeting (p. 90).
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2aBB6. A new k-space method for simulation of ultrasonic
propagation in tissue, T. Douglas Mast (Appl. Res. Lab., Penn State
Univ., University Park, PA 16802, mast@sabine.acs.psu.edu), D.-L.
Donald Liv (Siemens Medical Systems, Issaquah, WA 98027), Laurent
P. Souriau, Adrian [. Nachman, and Robert C. Waag (Univ. of Rochester,
Rochester, NY 14642)

A new k-space method for large-scale computations of ultrasonic
propagation is presented. In the new method, spatial derivatives frorm the
second-order acoustic wave equation for inhomogeneous media are evalu-
ated by Fourier transformation. Solutions are advanced in time using a
k—1t space Green's function, Computational results indicate that the new
method shares advantages of both past k-space and pseudospectral meth-
ods. For scatterers with propertics similar to soft tissue, the k-space
method provides much higher accuracy and lower computational cost than
a 2-4 finite-difference time domain method. The k-space method also
allows high accuracy to be obtained for time steps much larger than those
required by a leapfrog pseudospectral method. The low dispersion inherent
to the k-space method is illustrated by large-scale quasi-one-dimensional
computations, in which pulse waveforms incur negligible shape change for
propagation distances as large as 1000 wavelengths. Example applications
of the k-space method are demonstrated, including simulation of propaga-
tion through a large-scale tissue cross-sectional model and incorporation
of a k-space solver into a nonlinear inverse scatiering method employing
eigenfunctions of the far-field scattering operator.




TIME-DOMAIN INVERSE SCATTERING FOR
QUANTITATIVE ULTRASONIC MAMMOGRAPHY

T. Douglas Mast

Applied Research Laboratory
The Pennsylvania State University

mast@sabine.acs.psu.edu

A new method for ultrasonic mammography is presented. This method provides
quantitative tomographic images of inhomogeneous tissue using time-domain scattering
measurements made on a surrounding surface (for example, on a circle for images of a
two-dimensional breast cross section). High-resolution, quantitative images of tissue are
reconstructed using coherent combination of far-field scattered ultrasound waveforms,
delayed and summed to focus at each image point. The focused image is a reconstruction
of the spatially-dependent sound speed variation, and is equivalent to a wideband filtered
backpropagation reconstruction weighted by the spectrum of the incident wave. The
resulting images are higher in quality than frequency-domain quantitative reconstructions
and contain more diagnostic information than conventional B-scans.

Rigorous testing of the new imaging method is carried out using simulated ultrasonic
propagation through breast tissue. Breast tissue models are obtained both from
segmentation of stained cross sections and from analysis of high-resolution three-
dimensional data from the Visible Woman project. Computations of ultrasonic
propagation are performed using a new k-space method, in which the spatial differential
equations are solved by Fourier transformation and temporal iteration is performed using
a k-t space propagator. Numerical results indicate that this method is highly accurate for
large-scale soft-tissue computations, with much greater efficiency than that of competing
methods. Thus, the k-space method is particularly appropriate for large-scale two-
dimensional and three-dimensional computations of propagation through breast tissue.

Quantitative images, obtained using synthetic data for two-dimensional and
three-dimensional scattering of wideband pulses as well as measured scattering data from
a 2048-clement ring transducer, confirm that the time-domain reconstruction method
provides superior image quality for objects of size and contrast relevant to ultrasonic
mammography. The new method can also be extended to incorporate available
image-enhancement techniques, such as time-gain compensation to correct for medium
absorption and aberration correction methods to reduce error associated with weak
scattering approximations.

The US Army Medical Research and Materiel Command under DAMD17-98-1-8141
supported this work.




TIME-DOMAIN INVERSE SCATTERING FOR
QUANTITATIVE ULTRASONIC MAMMOGRAPHY

T. Douglas Mast

Applied Research Laboratory
The Pennsylvania State University

New methods for breast cancer detection and characterization are the focus of this project,
supported by the US Army Medical Research and Materiel Command. Major goals are
to establish a new high-resolution, quantitative ultrasonic imaging method and to test this
method using simulated propagation of ultrasonic pulses through accurately detailed breast
tissue models.

Detailed breast tissue models have been obtained both from stained breast cross sections
and from analysis of high-resolution three-dimensional data from the Visible Woman
project. To accurately compute ultrasonic propagation through these tissue models, a new
k-space method for ultrasound simulation has been developed. The k-space method is
more accurate, more efficient, and requires less storage than alternative methods, and is
thus ideal for computation of large-scale 2D and 3D ultrasonic propagation in breast tissue.

A new time-domain ultrasonic mammography method provides quantitative images of
inhomogeneous media including breast tissue. High-resolution maps of the tissue sound
speed are obtained from processing of measured ultrasonic scattering. Unlike previous
frequency-domain inverse scattering methods, the entire signal bandwidth is used, so that
reconstructed images have higher point resolution (ability to detect small structures such
as microcalcifications) and contrast resolution (ability to distinguish subtle differences
between tissue structures). The new method employs a straightforward time-domain
reconstruction algorithm, similar to synthetic-aperture methods used by current clinical
scanners, but provides much more diagnostic information than current B-scan devices.
The high efficiency of the reconstruction algorithm makes the new method particularly
well-suited for three-dimensional quantitative ultrasonic mammography.

Quantitative images, obtained both from synthetic and measured ultrasound data, confirm
that the new imaging method provides superior image quality and accurate quantitative
information. After further development and clinical implementation, the new ultrasonic
mammography method is expected to become competitive with magnetic resonance
jmaging and x-ray computed tomography as a tool for breast cancer detection and
characterization, while maintaining inherent advantages of ultrasound such as lower cost,
ability to characterize cystic and solid lesions, and safe, nonionizing radiation.
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